Lecture 2
Structural Aspects of Perovskites: Symmetry, Ordering and Intergrowths

Patrick Woodward
Department of Chemistry
Ohio State University

Structural & Compositional Flexibility

Ordering
• B-site Cation Ordering (i.e. Ba\textsubscript{2}MgWO\textsubscript{6})
• A-site Cation Ordering (i.e. NdAgTi\textsubscript{2}O\textsubscript{6})
• Anion/Vacancy Ordering (i.e. Ca\textsubscript{2}Fe\textsubscript{2}O\textsubscript{5})

Intergrowth Structures
• Ruddlesden-Popper Family (i.e. Sr\textsubscript{3}Ti\textsubscript{2}O\textsubscript{7})
• Dion-Jacobson Family (i.e. RbCa\textsubscript{2}Ta\textsubscript{3}O\textsubscript{10})
• Aurivillius Family (i.e. Bi\textsubscript{2}SrNb\textsubscript{2}O\textsubscript{6})

Distortions (covered next lecture)
• Octahedral Tilting Distortions (i.e. CaTiO\textsubscript{3})
• 1st Order Jahn-Teller Distortions (i.e. LaMnO\textsubscript{3})
• 2nd Order Jahn-Teller Distortions (i.e. BaTiO\textsubscript{3})
Crystallography of the Ideal Cubic Perovskite Structure

The Aristotype (Ideal) Structure

Space Group: $Pm3m$ *(Cubic)*
Lattice Parameters:
$a \cong 4 \text{ Å}$

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(Sr)</td>
<td>1b</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>B(Ti)</td>
<td>1a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X(O)</td>
<td>3d</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![A-site Cubo-octahedron](image1)

![B-site Octahedron](image2)

![Anion](image3)
Crystallographic Directions

[001]

[010]

[100]

[110]

[111]

Body Diagonal

Face Diagonal
3D Crystal Systems

<table>
<thead>
<tr>
<th>Crystal System</th>
<th>Required Symmetry Elements</th>
<th>Unit Cell Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>None</td>
<td>(a \neq b \neq c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha \neq \beta \neq \gamma)</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>Mirror (glide) plane or a 2-fold (2₁) axis</td>
<td>(a \neq b \neq c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha = \beta = 90^\circ, \gamma \neq 90^\circ)</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>Three mutually (\perp) 2-fold axes or mirror planes</td>
<td>(a \neq b \neq c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha = \beta = \gamma = 90^\circ)</td>
</tr>
<tr>
<td>Rhombohedral/Trigonal</td>
<td>One 3-fold axis</td>
<td>(a = b \neq c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha = \beta = 90^\circ, \gamma = 120^\circ)</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>One 6-fold axis</td>
<td>(a = b \neq c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha = \beta = 90^\circ, \gamma = 120^\circ)</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>One 4-fold axis</td>
<td>(a = b \neq c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha = \beta = \gamma = 90^\circ)</td>
</tr>
<tr>
<td>Cubic</td>
<td>Four 3-fold axes along the body diagonals</td>
<td>(a = b = c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha = \beta = \gamma = 90^\circ)</td>
</tr>
</tbody>
</table>

Symmetry in Space Group Pm\(3m\)

Long Herman-Mauguin Space Group Symbol

\[P \quad 4/m \quad \bar{3} \quad 2/m \]

Symmetry elements \(\parallel\) to (for axes) or \(\perp\) to (for planes) the \(a\)-, \(b\)-, & \(c\)-axes

In this case a 4-fold axis with a perpendicular mirror plane
Symmetry in Space Group Pm3m

Long Herman-Mauguin Space Group Symbol

\[P 4/m \bar{3} 2/m \]

Symmetry elements \parallel to (for axes) or \perp to (for planes) the body diagonals

In this case a 3-fold rotoinversion axis (rotate by 120° then invert)

Symmetry in Space Group Pm3m

Long Herman-Mauguin Space Group Symbol

\[P 4/m \bar{3} 2/m \]

Symmetry elements \parallel to (for axes) or \perp to (for planes) the face diagonals

In this case a 2-fold axis with a perpendicular mirror plane
Cation Ordering

Rock Salt Ordering of B-site Cations

\[\text{SrTiO}_3 \rightarrow \text{Sr}_2\text{MgWO}_6 \]

This type of cation ordering doesn’t destroy the 4-, 3- or 2-fold axes, but we need a larger unit cell now.
Rock Salt Ordering of B-site Cations

Stoichiometry: $\text{A}_2\text{BB'}\text{O}_6$

Crystal System: Cubic

Space Group: Fm3m

Lattice Parameter: $a \approx 2a_p$ (~8 Å)

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(Sr)</td>
<td>8c</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>B(Mg)</td>
<td>4a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B'(W)</td>
<td>4b</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>X(O)</td>
<td>24e</td>
<td>x</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rock salt ordering can also be described as ordering of cations onto alternating planes running perpendicular to [111]. This is seen in the XRD pattern by the appearance of the $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ peak and the $\frac{3}{2} \frac{1}{2} \frac{1}{2}$ peaks.
Layered Ordering of the B-site Cations

Stoichiometry: \(\text{A}_2\text{BB'}\text{O}_6 \)
Crystal System: Tetragonal
Space Group: \(\text{P}4/\text{mmm} \)
\(a \approx a_p \ (\sim 4 \ \text{Å}) \)
\(c \approx 2a_p \ (\sim 8 \ \text{Å}) \)

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Sr)</td>
<td>2h</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>z</td>
</tr>
<tr>
<td>B (Mg)</td>
<td>1a</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B' (W)</td>
<td>1b</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>X1 (O)</td>
<td>2g</td>
<td>0</td>
<td>0</td>
<td>z</td>
</tr>
<tr>
<td>X2 (O)</td>
<td>2f</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X3 (O)</td>
<td>2e</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>

Rock Salt Ordering of B-site Cations

Layered ordering can also be described as ordering into alternating planes running perpendicular to [001]. This is seen in the XRD pattern by the appearance of the peaks with half-integer values for \(l \).
Why is Layered ordering of B-site cations unfavorable?

Pauling’s 5th Rule
The number of chemically different coordination environments for a given ion in a crystal tends to be small. (Rule of Parsimony)

Brown’s Rule of Maximum Symmetry
The most stable structure is the most symmetric structure, consistent with the constraints acting on the system
Why is Rock Salt ordering of A-site cations unfavorable?

$A_2MM'X_6$
- Space Group = Fm3m
- A: 8c 1/4 1/4 1/4
- M: 4a 0 0 0
- M': 4b 1/2 1/2 1/2
- X: 24e x 0 0

Oxygen can displace in response to B/B' size mismatch

$AA'M_2X_6$
- Space Group = Fm3m
- M: 8c 1/4 1/4 1/4
- A: 4a 0 0 0
- A': 4b 1/2 1/2 1/2
- X: 24d 1/4 1/4 0

Oxygen cannot displace in response to A/A' size mismatch

Anion Vacancy Ordering
\[\text{Ca}_2\text{Fe}_2\text{O}_5 \] (Brownmillerite)

Remove \(\frac{1}{2} \) of the oxygen ions in the middle layer.

“CaFeO\textsubscript{3}”

All Fe3.5+ ions in octahedral coordination

\[\text{CaFeO}_{2.5} \rightarrow \text{Ca}_2\text{Fe}_2\text{O}_5 \]

50\% six coordinate Fe3+
50\% four coordinate Fe3+

Let’s take a closer look at the middle layer, where the oxygen vacancies are located.

“CaFeO\textsubscript{3}”

octahedral coordination

\[\text{Ca}_2\text{Fe}_2\text{O}_5 \] (Brownmillerite)

Distorted tetrahedral coordination

\[\text{Ca}_2\text{Fe}_2\text{O}_5 \]
Ca$_2$Mn$_2$O$_5$

“CaMnO$_3$”
All Mn$^{3.5+}$ ions in octahedral coordination

Remove columns of oxygen ions

CaMnO$_{2.5}$ → Ca$_2$Mn$_2$O$_5$
All Mn$^{3+}$ ions in square pyramidal coordination

Intergrowth Structures
Perovskite Intergrowth Structures

- **Ruddlesden-Popper Series**
 - Perovskite + Rock Salt

- **Dion-Jacobson Series**
 - Perovskite + CsCl

- **Aurivillius Series**
 - Perovskite + Bi$_2$O$_2$

Constructing an Intergrowth Structure

Dion-Jacobson Series

- **KZnF$_3$**
- **TIAIF$_4$**
 - n=1 Dion-Jacobson Structure

- Break corner sharing topology
- "repair" dangling bonds
Constructing an Intergrowth Structure

Ruddlesden-Popper Series

![Diagram of SrTiO₄ and Sr₂TiO₄ n=1 Ruddlesden-Popper Structure](image)

1. Break corner sharing topology,
2. Shift by $x=\frac{1}{2}$, $y=\frac{1}{2}$
3. Insert extra A-cation

Constructing an Intergrowth Structure

Aurivillius Series

![Diagram of Bi₂WO₆ and Bi₂O₅²⁺ Layer](image)

1. Bi₂WO₆
2. Bi₂O₅²⁺ Layer
Increasing the Width of the Perovskite Block

Ruddlesden-Popper Phases

\[A_{n+1}B_nO_{3n+1} \]

- Sr\(_2\)TiO\(_4\)
 n=1 layer
- Sr\(_3\)Ti\(_2\)O\(_7\)
 n=2 layer
- Sr\(_4\)Ti\(_3\)O\(_{10}\)
 n=3 layer