Drugs in Sport Testing
Drugs in Sport Testing

- Rationale behind the process
- Screening
- Confirmation
- Trends - methods including new ones
- ISO17025 and IOC accreditation
Why are substances banned

Any two of the following conditions are met:

- Performance enhancing
- Risk to the athlete
- Against the spirit of sport

May also be banned if it can potentially mask a banned substance.
What is banned

• Classes of drugs or methods as listed on the WADA of Prohibited List
 – Updated yearly
 – Decided by an expert group
 – Reviewed by interested groups

• Presence of drug, metabolite or marker in the urine/blood constitutes a violation - strict liability.
The List

- S1 - Anabolic steroids; S2 - Hormones; S3 - Beta2-agonists; S4 - Anti-estrogens; S6 - Stimulants; S7 - Narcotics; S8 - cannabinoids; S9 - Glucocorticosteroids
- M1 - Enhancement of Oxygen transfer; M2 - Chemical and Physical manipulation; M3 - Gene Doping
- P1 - Alcohol; P2 - Beta-blockers
Australian System

- All selection and collection done by Australian Sports Drug Agency (ASDA)
- ASDTL responsible only for the testing and reporting to ASDA
- ASDA manages results - notification to athlete and sporting body (only when completed)
- Sporting body responsible for hearings and sanctions
Collection Kits

- Urine samples collected in Berlinger bottles which are tamper proof.
- Same bottles used to transport blood tubes.
Screening

• This is classified as a presumptive test only
• Designed to detect as many substances in as few tests as possible
• Chemistry of classes defines sample preparation
• Specific detection (GC/NPD or GCMS)
• Data analysis as easy as possible.
Confirmation

- Used to prove the substance is present after the presumptive +ve test result
- Original sample realiquoted
- Definitive test using MS
- Can use either SIM or Full Scan
- Data fully documented
Criteria

• Have to define acceptance and rejection criteria in the method
 – Internal standards within limits
 – Are cut-off limits exceeded?
 – GC and EI MS data criteria - 3 ions must have relative intensities within WADA Technical Document and RT ±1%.
 – >50% Base peak → 10% absolute; 25-50% → 20% relative; < 25% → 5% absolute
 • ion with intensity in standard of 40% of base peak → the sample must lie between 32-48% of base peak
 • ion with intensity of 15% in the standard then sample must lie between 12 and 20% of base peak
 – Correspondence of full scan data which should be obtained

See http://www.wada-ama.org/rtecontent/document/criteria_1_2.pdf
TESTS

<table>
<thead>
<tr>
<th>Class of drug</th>
<th>Functional group</th>
<th>Procedure</th>
<th>Derivatisation</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulants</td>
<td>Amine</td>
<td>Organic extract from basic solution</td>
<td>None</td>
<td>GC NPD detector</td>
</tr>
<tr>
<td>Narcotics</td>
<td>Amine/Phenolic</td>
<td>Extractive alkylation</td>
<td>Methylation</td>
<td>GC/MS</td>
</tr>
<tr>
<td>Steroids</td>
<td>Hydroxyl/keto/neutral</td>
<td>C18 SFE</td>
<td>Silyl/enol silyl</td>
<td>GC/MS HRMS</td>
</tr>
<tr>
<td>Diuretics/ corticosteroids</td>
<td>Suphonylamino / carboxy</td>
<td>C18 SFE</td>
<td>None</td>
<td>LCMSMS</td>
</tr>
<tr>
<td>Peptide hormones</td>
<td>Proteins</td>
<td>Immunoassay</td>
<td>Nil</td>
<td>Immunoassay LCMS</td>
</tr>
</tbody>
</table>
Stimulants

- Screening is by simple basic extract
- No derivatisation necessary
- GCNPD detection
- GCMS on suspicious samples
- Confirmation by GCMS
- Optical purity using TMP derivative
Amphetamine MS
DERIVATISATION

- 1ml urine
- 5ml hexane
- 30ul 2% chiral reagent in hexane
- 50ul 6M sodium hydroxide
- shake 15mins
- remove organic solvent and evaporate
- reconstitute in 100ul ethyl acetate
CHIRAL DERIVATISATION

R(+)–MOSHERS ACID CHLORIDE

AMPHETAMINE

RS

RR
TIC d,l-AMPHETAMINE DERIV.

Abundance

Time-->

TIC:

d,l-AMPHETAMINE

d-amphetamine rrt = 2.365
l-amphetamine rrt = 2.424

DPA INSTD

3.42
6.63
8.09
8.29
d-AMPHETAMINE DERIV.

Scan 395 (8.092 min):
d,l-AMPHETAMINE

M⁺
Steroids

- Occur as conjugates with glucuronic acid or as sulphates
- Enzyme hydrolysis to give free steroid
- Purification by solvent extraction, SPE, HPLC or immunoaffinity columns
- Not very volatile, unstable, poor GC properties.
Steroid detection

- Functional groups only hydroxyl and keto.
- Use trimethylsilyl iodide to catalyse the derivatisation
 - gives OTMS derivatives
 - gives single enolTMS derivatives
Single ion monitoring (SIM) MS

- SIM provides high sensitivity using a quadrupole MS
- Characteristic ions for each substance are selected.
- Only those ions are collected - means more time is spent collecting the ions
- Can scan faster
- Less information obtained - used for detection and quantification.
Full scan MS

- Scan complete continuous set of masses determined by the operator
- The time for collecting each mass depends on the scan range
- Time between scans is long - lower sensitivity in quadrupole instruments
- Full spectral data - preferred use for confirmation of identity
Steroid analysis

- Use SIM MS for screening
- 3 ions monitored for each substance
- maximum of 20 ions at a time to keep time between scans short (<1 sec) up to 10 such groups
- Chromatography is very important - need very good separation of the substances in the GC but need to keep run time short to manage sample load.
Data analysis

Total ion chromatogram

Extracted ion chromatogram m/z 432
Full Scan vs SIM
Ion Chromatograms

TIC nandrolone metab.

Full scan m/z 420 and 405

SIM m/z 420 and 405
Full scan and SIM spectra

Scan 459 (7.785 min): 7901019.D (-)

Scan 542 (7.772 min): 7902020.D

Full Scan
m/z 40-500

SIM 13 ions
SAMPLE CLEANUP

• TECHNIQUES USED
 – SOLID PHASE
 – IMMUNOAFFINITY CHROMATOGRAPHY
 • 17-METHYL STEROIDS
 • TRENBOLONE
 – HPLC CLEANUP
 • GENERAL FOR ALL STEROIDS
Endogenous steroids

- These occur in each individual and are excreted in the urine
- Examples - testosterone, epitestosterone, DHEA, Dihydrotestosterone
- Can be taken as synthetics to provide anabolic activity
- Need to tell natural from administered
Endogenous steroids

- There are major differences in the problems facing the analyst when detecting abuse of endogenous as compared to exogenous compounds.
- With exogenous compounds the presence at any level may be a violation.
- With endogenous compounds detection alone is obviously not a sufficient reason to presume doping.
Means of Distinguishing Exogenous and Endogenous Compounds

- Elevated levels
- Ratios of levels compared to other related compounds
- Subtle chemical differences between synthetic and natural compounds
- Presence of marker compounds at elevated or unusual levels
Means of Distinguishing Exogenous and Endogenous Compounds

- Elevated levels
- Ratios of levels compared to other related compounds
- Subtle chemical differences between synthetic and natural compounds
- Presence of marker compounds at elevated or unusual levels
Natural Anabolic Steroids

- Ultra high sensitivity detection techniques such as high resolution mass spectrometry are not required because the normal levels present are not low being > 10 ng/mL.

- Detection of testosterone doping has been based on the ratio of the concentrations of testosterone to epi-testosterone (T/E ratio). A ratio of greater than 6 to 1 is taken to be indicative of doping.
Isotope Ratio Mass Spectrometry

• Depends on measuring the small variations in the natural abundances of stable isotopes such as 13C and 12C. The abundance of 13C is approximately 1.1% of that of 12C.

• Has been widely used for the detection of adulteration of foods.

• Requires a dedicated high precision instrument to measure the very small differences involved - a delta value of 1 corresponds to 0.001% and thus requires distinguishing 1.101% from 1.100%. This requires measurements to be correct to 5 significant figures.
Natural Variation in 13C

Carbon Dioxide

Atmospheric
Methane

Man
Atmospheric

Europe
USA

Plants

C3
C4

CAM

$\delta^{13}C$

-80 -50 -40 -30 -20 -10 0 +10
Principles of IRMS

- Samples are purified and separated by high performance liquid chromatography (HPLC) and/or by gas chromatography (GC).
- The peaks corresponding to the compounds of interest must be completely resolved.
- The compounds eluting from the GC are reacted in a combustion interface to produce CO$_2$ which passes into the MS where the masses 44, 45 and 46 are simultaneously recorded.
IRMS and Testosterone

- Three research groups have found that there is a significant difference between endogenous and exogenous testosterone

<table>
<thead>
<tr>
<th>Delta 13C</th>
<th>Synthetic testosterone</th>
<th>Endogenous testosterone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-28 to -29</td>
<td>-21 to -26</td>
</tr>
</tbody>
</table>
IRM Test for Testosterone

- Measures both testosterone and metabolites as well as precursors and looks for differences.
- Is a more definitive test for testosterone doping.
- Should be possible to replace a series of T/E measurements with one IRMS determination.
Peptide Hormones

- Typically large polypeptides (>10,000 amu)
- Natural levels are low (pg/mL), and have considerable variation.
- Not amenable to conventional GC/MS drug screening procedures.
- Can have short half lives (hours).
- May have long lasting effects (months).
- Are readily available due to recombinant biotechnology.
Erythropoietin (EPO)

- Hormone that stimulates erythropoiesis (production of erythrocytes) by bone marrow.
- is the principal factor in the regulation of red blood cell production.
- Is a glycoprotein with a Mol. Wt. of 30,400
- Is used medically to assist patients with renal problems.
The Urine Test

- Developed by Dr Francoise Lasne of the Laboratoire National de Depistage du Dopage.
- Uses gel electrophoresis to examine the EPO in urine to determine whether it is normal or from an external source (recombinant EPO).
- Is a direct test for the presence of recombinant EPO which relies on the fact that the recombinant product has a different glycosylation pattern from urinary EPO.
Gel Electrophoresis (IEF)
Recombinant erythropoietin in urine
An artificial hormone taken to boost athletic performance can now be detected.

brief communications

Françoise Lasne, Jacques de Ceaurriz
National Anti-Doping Laboratory,
92290 Châtenay-Malabry, France.

ISO17025 and WADA accreditation

- WADA accreditation is the top level
 - sets the criteria
 - checks ability to perform
 - International acceptance - WADA Code

- ISO17025 is the system process
 - ensures the lab has infrastructure
 - meets quality standards
 - Calibration
 - Validated methods
 - Records