The art forger, Van Meegeren, was tried in 1947 for selling Dutch national treasures (paintings attributed to Vermeer, 1632-1675) to the Nazis. Had radiocarbon dating been developed at the time of his trial, what disintegration rate (disintegrations/min/g of carbon) would have been observed from the carbon black pigment if the paintings were genuine. The current rate of ^{14}C decay is 15.3 disintegrations/min/g of carbon and the half-life of ^{14}C is 5730 years.

\[
\ln\left(\frac{N_0}{N}\right) = kt = \left(\frac{0.693}{t_{1/2}}\right)t
\]

for ^{14}C, $t_{1/2} = 5730$ years

$N_0 = 15.3$

from the question, t will be $\sim 1947-1657 = 390$ years

It is necessary to determine N.

Therefore,

\[
\ln\left(\frac{15.3}{N}\right) = \left(\frac{0.693}{5730}\right)^{290}
\]

\[
\ln(15.3) - \ln(N) = 0.035 \\
\ln(N) = \ln(15.3) - 0.035 = 2.728 - 0.035 = 2.693 \\
N = 14.77 \div 3
\]

If students use

\[
\log\left(\frac{N_0}{N}\right) = \left(\frac{0.693}{t_{1/2}}\right)t
\]

Then their answer will be 14.113.

Assume that the maximum sensitivity of modern detectors for ^{14}C dating (i.e., the ability to confidently detect a signal from a sample in the presence of the natural background) is 1000 ppm. Which of the following (in years) best approximates...
(to ± 5000 years) the maximum age of an artefact that can reliably be determined using such detectors?

A. 25,000 B. 40,000 C. 75,000 D. 90,000

The current rate of 14C decay is 15.3 disintegrations/min/g of carbon and the half life of 14C is 5730 years.

The weakest signal that can be detected is 0.001 disintegrations/min/g of carbon. That is,
in the formula

$$\ln\left(\frac{15.3}{N}\right) = \left(\frac{0.693}{5730}\right)\Delta t$$

N = 0.001

So

$$\ln\left(\frac{15.3}{0.001}\right) = \left(\frac{0.693}{5730}\right)\Delta t$$

Then,

$$\ln(15300) = 9.6356 = (0.693/5730)\Delta t = 1.2094 \times 10^{-4} \Delta t$$

$$\Delta t = 9.6356 / 1.2094 \times 10^{-4} = 79671$$

i.e., answer C

If students use

$$\log\left(\frac{N_0}{N}\right) = \left(\frac{0.693}{t_{1/2}}\right)t$$

Then their answer will be -79671, and they are still likely to give answer C.

If they use $N = 0.0001$, and they use the formula

$$\ln\left(\frac{15.3}{N}\right) = \left(\frac{0.693}{5730}\right)\Delta t$$

then their answer will be $\Delta t = 98710$

and they may choose answer D. This doesn’t quite fit, so give 9 marks.
Which of the following best describes the technique of Selected Ion Monitoring used in the analyses of arson residues and in sports drug testing?

A. The constituents of a test sample are well-separated gravimetrically, then fed into a mass spectrometer which very accurately measures a limited number of characteristic ions of each component of the mixture.

B. The constituents of a test sample are well-separated by gas chromatography, then fed into a mass spectrometer which very accurately measures the m/e values of a limited number of characteristic ions of each component of the mixture.

C. The constituents of a test sample are well-separated by gas chromatography, then fed into a mass spectrometer which very accurately measures the intensities of a limited number of characteristic ions of each component of the mixture.

D. The constituents of a test sample are well-separated by gas chromatography, then fed into a mass spectrometer which very accurately measures the intensities and m/e values of a limited number of characteristic ions of each component of the mixture.

The correct answer is D

Answer A gets 3 marks, the constituen