none of these

\[
p = K
\]

(d) \(p = K \)

\[
pp((RRTT)) = KK((cc))KKcc^2
\]

2. The relationship between \(p \) has the value 0.800 atm for the reaction \(K \). What is the value of \(°p \)?

\[
\begin{align*}
\text{(a)} & \quad 2.28 \text{ atm} \\
\text{(b)} & \quad 4.1 \times 10^{-5} \text{ atm}^{-1} \\
\text{(c)} & \quad 10.2 \text{ atm} \\
\text{(d)} & \quad 131 \text{ atm} \\
\text{(e)} & \quad \text{none of these}
\end{align*}
\]

3. For the reaction \(\text{N}_2 (g) + 3\text{H}_2 (g) \rightarrow 2\text{NH}_3 (g) \) came to equilibrium. How much \(\text{Cl}_2 (g) \) was formed?

\[
\begin{align*}
\text{(a)} & \quad 0.0348 \text{ mole} \\
\text{(b)} & \quad 0.0828 \text{ mole} \\
\text{(c)} & \quad 0.0899 \text{ mole} \\
\text{(d)} & \quad 16.4 \text{ atm}^3 \\
\text{(e)} & \quad \text{none of the above}
\end{align*}
\]

4. Gaseous carbon dioxide is partially dissociated according to the equilibrium:

\[
\text{CO}_2 (g) \rightarrow \text{CO}(g) + \frac{1}{2}\text{O}_2 (g)
\]

At equilibrium, the total pressure in the container was found to be 3.20 atm at a temperature of 500 K. How much \(\text{CO}_2 (g) \) is present in a 500 mL container and react to reach equilibrium?

\[
\begin{align*}
\text{(a)} & \quad 0.016 \text{ atm} \\
\text{(b)} & \quad 2.0 \times 10^{-6} \text{ atm} \\
\text{(c)} & \quad 4.2 \times 10^{-6} \text{ atm} \\
\text{(d)} & \quad 1.3 \times 10^{-4} \text{ atm} \\
\text{(e)} & \quad \text{none of these}
\end{align*}
\]

5. An initial pressure of \(\text{CO}_2 \) of 1.000 atm is placed in a closed container at 2000 K. 1.60% of the introduced \(\text{CO}_2 \) will react to reach equilibrium. What is the value of the equilibrium constant? For reaction 1 would be:

\[
\begin{align*}
\text{(a)} & \quad 1.3 \times 10^{-4} \text{ atm}^{-1} \\
\text{(b)} & \quad 22 \times 10^{-6} \text{ atm}^{-2} \\
\text{(c)} & \quad 3.0 \text{ atm}^{-2} \\
\text{(d)} & \quad 6.2 \text{ L}^2 \text{ mol}^{-2} \\
\text{(e)} & \quad \text{none of these}
\end{align*}
\]

6. For the reaction below, calculate the equilibrium constant. What is the temperature of 500 atm, after which equilibrium is allowed to be reached. If \(y \) is the partial pressure of \(\text{H}_2 \) at 600 K for the reaction:

\[
\begin{align*}
\text{(a)} & \quad (2 - 2y)^2 / (y^2) (2y) \\
\text{(b)} & \quad (2 - y)^2 / (y^2) (y/2) \\
\text{(c)} & \quad (2 - 2y)^2 / (y^2) (2y) (y) \\
\text{(d)} & \quad (2 - y)^2 / (y^2) (y) \\
\text{(e)} & \quad \text{none of the above}
\end{align*}
\]

7. The values of the equilibrium constants for two reactions are given below. If, at a given temperature, the equilibrium constant for the reaction:

\[
\begin{align*}
\text{(a)} & \quad 0.872\% \\
\text{(b)} & \quad 0.650\% \\
\text{(c)} & \quad 0.872\% \\
\text{(d)} & \quad 88.3\% \\
\text{(e)} & \quad \text{none of these}
\end{align*}
\]

(a) the temperature shows a sharp rise.
(b) all chemical reactions stop.
(c) the concentration of the reactants and products become equal.
(d) the forward reaction stops.
(e) the forward reaction becomes equal.