Dr Kepert, Chem 1901

Chemical Equilibrium I

Silberberg 2nd Ed, Chapter 17

- Series of plots of concentration vs time
- Initial Rates
- Reaction Orders
- Rate Constant k and actual rate law
- Integrated rate law (reaction order; half-life)
- Activation Energy E_a

Rate Law:

Method

Reaction Mechanisms:

- Determine Rate Law by Experiment
- Devise a mechanism
- Predict Rate Law for Mechanism
- If Predicted and Experimental Rate Laws do not agree
- Look for additional supporting evidence
- If Predicted and Experimental Rate Laws agree

Kinetics: A Reminder

Chemical Equilibria:

- The Extent Of Chemical Reactions

- Kinetics - the speed of reactions
- Equilibrium - the extent of reactions
 - No reaction goes to 100%.
 - All reactions are reversible.
 - Reactions incomplete because, at equilibrium:
 - rate of forward reaction = rate of reverse reaction
 (not because reaction stops!)

- Dynamic Equilibrium:
 - $aA + bB \rightarrow cC + dD$
 - forward (L to R) and reverse (R to L) reactions occur simultaneously.

- Example: $N_2O_4 \rightarrow 2 NO_2$
 - colourless
 - brown

- Concentration vs time

- Equilibrium concentration

- Equilibrium Constant

- $aA + bB \rightarrow cC + dD$

- * At equilibrium, concentrations are given by the Law of Mass Action:

 \[
 \frac{[C]_{eq}^c [D]_{eq}^d}{[A]_{eq}^a [B]_{eq}^b} = K
 \]

- $K = \frac{[C]_{eq}^c [D]_{eq}^d}{[A]_{eq}^a [B]_{eq}^b}$

- “Law” of Mass Action first deduced from experiment, then proved from laws of thermodynamics.
Magnitude Of Equilibrium Constants

At Equilibrium:
- if $K > 1$ ⇒
- if $K < 1$ ⇒
- if $K = 1$ ⇒

Relation between K and Rate Constants

- Take system with elementary reactions, e.g.:
 \[\text{Cl}_2 \leftrightarrow 2\text{Cl} \]
 \[k_f \quad \text{and} \quad k_r \]
 For Elementary Reactions (usually unimolecular and bimolecular)

- at equilibrium, forward rate = reverse rate, so:

K_c : Equilibrium Constant with respect to Concentration

- Reaction involving solutions:
 \[aA + bB \rightarrow cC + dD \]
 \[K_c = \frac{[cC][dD]}{[aA][bB]} \]
 \[] \text{units} = M (\text{mol} L^{-1}) \]
 • Units of K_c depend on values of a, b, c & d

K_p : Equilibrium Constant with respect to Partial Pressure

- Reaction involving gases:
 \[aA (g) + bB (g) \leftrightarrow cC (g) + dD (g) \]
 \[K_p = \frac{(p_C)^c(p_D)^d}{(p_A)^a(p_B)^b} \]
 \[(p_A = \text{partial pressure of} \ A \ \text{at equilibrium}, \ etc.) \]
 • Units of K_p = atm, etc.
 • Units of K_p depend on values of a, b, c & d

Example

Cl$_2$ is placed in a vessel and heated to 1400 K.
Cl$_2$(g) \rightarrow 2Cl(g)
When equilibrium reached we find:
p$_{Cl_2}$ = 1 atm, p$_{Cl}$ = 2.97 x 10^{-2} atm

- What is the value of K_p at 1400 K?

Example from Kinetics II & III

Fast reversible reaction followed by a slow step:
(1) 2NO(g) + * \leftrightarrow N$_2$O$_2$ (g) fast (equil. const. K)
(2) N$_2$O$_2$ (g) + O$_2$(g) \rightarrow 2NO$_2$ slow (rate constant k)
2NO(g) + O$_2$(g) \rightarrow 2NO$_2$(g) net reaction

Rate = rate of slow step = $k \ [N_2O_2][O_2]$

From (1), with equilibrium constant, \[K = \frac{[N_2O_2]}{[NO][NO]} \]
\[\Rightarrow [N_2O_3] = K[NO]^2 \]

So rate = $k \ [N_2O_2][O_2] = k \ K[NO]^2[O_2]$
\[\Rightarrow \text{rate} = \text{constant} \times [NO]^2[O_2] \]
consistent with observed rate law

Relationship Between K_p & K_c

- $pV = nRT$
 \[[\text{concentration}] = \frac{n}{V} = \frac{P}{RT} \; \text{; (units} \ M \ \text{moles} \ L^{-1}) \]

Cl$_2$(g) \rightarrow 2Cl(g)

\[K_c = \frac{[Cl]^2}{[Cl_2]} = \frac{(p_{Cl}/RT)^2}{(p_{Cl_2}/RT)} \]

so K_p = K_c(RT)$^{-\Delta n}$

Δn = (n$_{\text{gas products}}$ - n$_{\text{gas reactants}}$)

Catalysts and Equilibrium