Gases, Liquids and Solids III

Silberberg 2nd Ed, Chapter 5
www.chem.usyd.edu.au/hpage3.htm (login “chem”, passwd “chem@usyd”)
Any questions or requests - email to c.kepert@chem.usyd.edu.au
Molecular Speed

Relative number of molecules with given speed

O₂ (32)
N₂ (28)
H₂O (18)
He (4)
H₂ (2)

Speeds of Different Molecules

Kinetic energy \(E_k = \frac{1}{2} m v^2 \)
\(\propto T \)
= constant at fixed T

Pressure \(P \)
\(\propto E_k = \frac{1}{2} m v^2 \)
\(\propto T \)
= same for all molecules
Effusion and Diffusion
Graham’s Law

Rate of gas effusion/diffusion $\propto \frac{1}{\sqrt{\text{molar mass}}}$

Reason: diffusion is at constant energy $= \frac{1}{2} m v^2$
If $\frac{1}{2} m v^2$ is constant, then velocity $v \propto \frac{1}{\sqrt{m}}$

Diffusion time $\propto 1/\text{velocity} \propto \sqrt{\text{molar mass}}$
Distribution of Molecular Speeds

See Silberberg - Fig 5.14, page 200
Definition of Temperature

The Kinetic Theory of Gases *assumes* that temperature is proportional to the average kinetic energy of the gas.

Approximate derivation from Friday’s lecture:

\[PV = n N_A m v^2 \]

\[T = N_A m v^2 / R \]

Better derivation, allowing molecules to travel in all three directions:

\[PV = n N_A m v^2 / 3 \]

\[T = N_A m v^2 / 3R = 2 N_A E_k / 3R \]

\(E_k = 1/2 m v^2 = \text{kinetic energy} \)

Ideal gas thermometer: use gas that behaves ideally to measure T from observed volume and pressure using \(PV = nRT \).
PV = nRT is an equation of state - it provides the relation between variables in a given state.

The Ideal Gas Law is based on the Kinetic Theory of Gases, which approximates molecules as tiny hard particles with no interaction.

ideal gas model ➔ gases cannot be condensed
ideal gas model ➔ V = 0 at T = 0
Real Gases – Deviations From Ideality

A breakdown of ideal gas assumptions arises because of
INTERMOLECULAR FORCES

Long-range attractive forces *(these enable gases to liquefy):*
- dipole-dipole
- hydrogen bonding
- dispersion

Short-range repulsive force *(non-zero size of molecules):*
- from Pauli Principle (cannot push molecules on top of each other, or they would have same quantum numbers)
Look at compression ratio \(\frac{pV}{nRT} \) as a function of pressure.

\[
\frac{pV}{nRT} = 1 \quad \text{for an ideal gas}
\]
compression ratio
PV/nRT

CO₂ 300 K

Ideal Gas
Size of Non-Ideal Effects

Deviation from ideality depends on the following:

- **type of molecule** (strength of intermolecular forces): He has weakest forces, more polarizable molecules such as CO$_2$ have larger ones.

- **temperature** (high T \Rightarrow molecules move so fast they do not “see” intermolecular forces).

- **pressure** (all gases are ideal at sufficiently low pressures).
The Behaviour of Real (Non-Ideal) Gases

Diagram showing the relationship between PV/RT and P_ext for different gases such as H2, He, CO2, and CH4. The diagram illustrates the deviation from ideal gas behavior with increasing pressure. The key points are:

- For PV/RT > 1, the effect of molecular volume predominates.
- For PV/RT < 1, the effect of intermolecular attractions predominates.
Intermolecular forces lessen the force of impact with the wall - real pressure is *lower*

\[P = P_{\text{ideal}} - a \left(\frac{n}{V} \right)^2 \]
Correcting for Repulsive Forces

\[V = V_{\text{ideal}} + nb \]
Non-Ideal Gas Equations of State:
The van der Waals Equation

Ideal:

\[P \times V = nRT \]

Non-Ideal:

\[
\left(P + \frac{n^2a}{V^2} \right) \times (V - nb) = nRT
\]

- Corrects for long range attraction
- Corrects for short range repulsion (finite volume of molecules)
Experimentally-Derived Parameters

\[\left(P + \frac{n^2a}{V^2} \right) \times (V - nb) = nRT \]

<table>
<thead>
<tr>
<th>Gas</th>
<th>(a \left(\text{atm} \cdot \text{L}^2/\text{mol}^2 \right))</th>
<th>(b \left(\text{L}/\text{mol} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0.034</td>
<td>0.0237</td>
</tr>
<tr>
<td>Ne</td>
<td>0.211</td>
<td>0.0171</td>
</tr>
<tr>
<td>Ar</td>
<td>1.35</td>
<td>0.0322</td>
</tr>
<tr>
<td>Kr</td>
<td>2.32</td>
<td>0.0398</td>
</tr>
<tr>
<td>Xe</td>
<td>4.19</td>
<td>0.0511</td>
</tr>
<tr>
<td>H₂</td>
<td>0.244</td>
<td>0.0266</td>
</tr>
<tr>
<td>N₂</td>
<td>1.39</td>
<td>0.0391</td>
</tr>
<tr>
<td>O₂</td>
<td>1.36</td>
<td>0.0318</td>
</tr>
<tr>
<td>Cl₂</td>
<td>6.49</td>
<td>0.0562</td>
</tr>
<tr>
<td>CO₂</td>
<td>3.59</td>
<td>0.0427</td>
</tr>
<tr>
<td>CH₄</td>
<td>2.25</td>
<td>0.0428</td>
</tr>
<tr>
<td>NH₃</td>
<td>4.17</td>
<td>0.0371</td>
</tr>
<tr>
<td>H₂O</td>
<td>5.46</td>
<td>0.0305</td>
</tr>
</tbody>
</table>

\(a \) -

\(b \) -
Example

• Find the ideal and real (van der Waals) pressure of 1.00 mol of CO$_2$ occupying 1.32 L at 48.0 °C.
The van der Waals Equation has problems:

- e.g., value of \(b\) for He > \(b\) for Ne, wrong way round (Ne bigger than He!)

Virial Equation of State

- Better: “Virial” (= “force”) equation

\[
\frac{PV}{nRT} = 1 + B \frac{n}{V} + C \left(\frac{n}{V} \right)^2
\]

- \(B, C\) are \(T\)-dependent
- Can be calculated from knowledge of intermolecular forces
- First to do this: an Australian, John Barker (1969)