Acids and Bases IV

Silberberg 2nd Ed, Chapter 18 & 19
www.chem.usyd.edu.au/hpage3.htm (login “chem”, passwd “chem@usyd”)
http://www.science.ubc.ca/~chem/tutorials/pH/launch.html
Any questions or requests - email to c.kepert@chem.usyd.edu.au
Revision: Buffers

– Solutions containing both
 a weak acid + its salt OR a weak base + its salt

that withstand pH changes when (limited) amounts of acid or base are added.
Revision:
Henderson - Hasselbalch Equation

For a buffer solution, which contains similar concentrations of a conjugate acid/base pair of a weak acid:

\[K_a = \frac{[H^+][A^-]}{[HA]} \approx \frac{[H^+][\text{added base}]}{[\text{added acid}]} \]

since the dissociation of HA or protonation of A\(^-\) doesn’t lead to a significant change in the concentrations of these species.

Rearranging:

\[pH \approx pK_a + \log \frac{[\text{added base}]}{[\text{added acid}]} \]
Example

- Find pH of solution which is 0.1 M in NH$_4^+$ and 0.2 M in NH$_3$ where pK$_a$ of NH$_4^+$ = 9.2

$$\text{NH}_3 + \text{H}_2\text{O} \leftrightharpoons \text{NH}_4^+ + \text{OH}^-$$

before: \hspace{1em} 0.2 \hspace{1em} 0.1 \hspace{1em} 0
after: \hspace{1em} 0.2 - x \hspace{1em} 0.1 + x \hspace{1em} x

\[pK_b = 14 - 9.2 = 4.8 \]

\[K_b = 10^{-4.8} = \frac{(0.1 + x)x}{0.2 - x} \approx \frac{0.1x}{0.2} \Rightarrow \text{pH} = 9.5 \]

Using Henderson-Hasselbalch:

\[\text{pH} \approx pK_a + \log \frac{[\text{added base}]}{[\text{added acid}]} \]
Example

Consider a buffer solution with 0.1 M each of sodium acetate (NaA) & acetic acid (HA):

(found earlier that pH = 4.7)

What is the pH when 10^{-3} M HCl is added?

Using the Henderson-Hasselbalch Equation:

$$\text{pH} \approx \text{pK}_a + \log \frac{[\text{added base}]}{[\text{added acid}]}$$
Buffer Preparation and Capacity

Buffer Preparation

- If the pH of a required buffer is pK_a of available acid then use equimolar amounts of acid and conjugate base.

- If the required pH differs from the pK_a then use the Henderson-Hasselbalch equation.

Buffer Capacity

Buffer capacity is related to the amount of strong acid or base that can be added without causing significant pH change.

Depends on amount of acid & conjugate base in solution:

- highest when [HA] and [A$^-$] are large

- highest when $[HA] \approx [A^-]$ (most effective buffers have acid/base ratio less than 10 and more than 0.1 \Rightarrow pH range is ± 1)
Buffers in Natural Systems

• Biological systems, e.g. blood, contain buffers: pH control essential because biochemical reactions are very sensitive to pH

• Human blood is slightly basic, pH ≈ 7.39 – 7.45

• In a healthy person, blood pH is never more than 0.2 pH units from its average value

• pH < 7.2, “acidosis”; pH > 7.6, “alkalosis”

• Death if pH < 6.8 or > 7.8
Buffer System in Blood

- “Extracellular” buffer (outside cell)

\[
\begin{align*}
\text{H}^+ + \text{HCO}_3^- & \leftrightarrow \text{H}_2\text{CO}_3 \\
\text{H}_2\text{CO}_3 & \leftrightarrow \text{H}_2\text{O} + \text{CO}_2 (g)
\end{align*}
\]

- Removal of CO\textsubscript{2} shifts equilibria to right, reducing [H+], i.e., raising the pH

- The pH can be reduced by:

\[
\text{H}_2\text{CO}_3 + \text{OH}^- \leftrightarrow \text{HCO}_3^- + \text{H}_2\text{O}
\]
Another Blood Buffer

- Phosphate buffer, present **inside** cells (“intracellular” buffer)
- H_2PO_4^- and HPO_4^{2-}:

$$\text{H}_2\text{PO}_4^- \Leftrightarrow \text{H}^+ + \text{HPO}_4^{2-}$$

from H_3PO_4, a tribasic (triprotic) acid
In the \(\text{H}_3\text{PO}_4 / \text{NaH}_2\text{PO}_4 / \text{Na}_2\text{HPO}_4 / \text{Na}_3\text{PO}_4 \) system, how could you make up a buffer with a pH of 7.40?

DATA: \(K_{a1} = 7.2 \times 10^{-3}, \ K_{a2} = 6.3 \times 10^{-8}, \ K_{a3} = 4.2 \times 10^{-13} \)
Titrations

• **Equivalence Point:**
 - when number of moles of added base = original number of moles of acid
 – Strong acid/strong base pH = 7
 – Weak acid/strong base pH > 7
 – Strong acid/weak base pH < 7

• **End Point:**
 - when a colour change in the indicator is observed

⇒ Choose an indicator that changes colour close to the equivalence point
Indicators

weak acid ⇌ base

– each form has a different colour

• The pH at which acid → base depends on the pK$_a$ of the indicator
Demonstration: Organic Molecules as Indicators

- Nitrogen and oxygen in a molecule may intensify colour
- If a conjugate base has a different colour to the acid form, the pair may be used as an indicator in titrations
Titrations: Strong Acid / Strong Base

Table:

<table>
<thead>
<tr>
<th>Volume of NaOH added (mL)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>00.00</td>
<td>1.00</td>
</tr>
<tr>
<td>10.00</td>
<td>1.22</td>
</tr>
<tr>
<td>20.00</td>
<td>1.48</td>
</tr>
<tr>
<td>30.00</td>
<td>1.85</td>
</tr>
<tr>
<td>35.00</td>
<td>2.18</td>
</tr>
<tr>
<td>39.00</td>
<td>2.89</td>
</tr>
<tr>
<td>39.50</td>
<td>3.20</td>
</tr>
<tr>
<td>39.75</td>
<td>3.50</td>
</tr>
<tr>
<td>39.90</td>
<td>3.90</td>
</tr>
<tr>
<td>39.95</td>
<td>4.20</td>
</tr>
<tr>
<td>39.99</td>
<td>4.90</td>
</tr>
<tr>
<td>40.00</td>
<td>7.00</td>
</tr>
<tr>
<td>40.01</td>
<td>9.40</td>
</tr>
<tr>
<td>40.05</td>
<td>9.80</td>
</tr>
<tr>
<td>40.10</td>
<td>10.40</td>
</tr>
<tr>
<td>40.25</td>
<td>10.50</td>
</tr>
<tr>
<td>40.50</td>
<td>10.79</td>
</tr>
<tr>
<td>41.00</td>
<td>11.09</td>
</tr>
<tr>
<td>45.00</td>
<td>11.76</td>
</tr>
<tr>
<td>50.00</td>
<td>12.05</td>
</tr>
<tr>
<td>60.00</td>
<td>12.30</td>
</tr>
<tr>
<td>70.00</td>
<td>12.43</td>
</tr>
<tr>
<td>80.00</td>
<td>12.52</td>
</tr>
</tbody>
</table>

Graph:

- **Titration of 40.00 mL of 0.1000 M HCl with 0.1000 M NaOH**
- **Equivalence point at pH 7**

Fig 19.6
Titrations: Weak Acid / Strong Base

- equivalence point pH > 7 (value depends on starting concentrations)
- change is more gradual
Titrations:
Weak Base / Strong Acid

Fig 19.8

- equivalence point pH < 7
 (value depends on starting concentrations)
Titrations:
Strong Base/Weak Acid

Fig 19.9

Titrations of 40.00 mL of 0.1000 \(M \) \(H_2SO_3 \) with 0.1000 \(M \) \(NaOH \)

\[pK_{a1} = 1.85 \]
\[pK_{a2} = 7.19 \]

\[[HSO_3^-] = [SO_3^{2-}] \quad \text{at second equivalence point} \]

\[[H_2SO_3] = [HSO_3^-] \quad \text{pH = 4.25 at first equivalence point} \]

\[\text{Buffer region} \]

\(\text{pH} = 9.86 \)`
Question 19 from this week’s problem sheet

– 1.00 mL of acid taken from a lead storage battery was pipetted into a flask. Deionised water and phenolphthalein were added and the solution titrated with 0.50 M NaOH until a pink colour appeared. 12.0 mL were required. What mass (to within 5%) of H$_2$SO$_4$ is present in 1.00 L of the battery acid?