1. Identify the Brønsted-Lowry acids and bases in the following equation.
A = Brønsted-Lowry ACID, B = Brønsted-Lowry BASE.

\[\text{HSO}_3^- + \text{CN}^- \rightleftharpoons \text{HCN} + \text{SO}_4^{2-} \]

(a) B A B A
(b) B B A A
(c) A B B A
(d) B A A B

2. The dihydrogenphosphate ion, \(\text{H}_2\text{PO}_4^- \), has both a conjugate acid and a conjugate base. These are, respectively:

(a) \(\text{H}_3\text{PO}_4 \), \(\text{PO}_4^{3-} \)
(b) \(\text{H}_2\text{PO}_4 \), \(\text{H}_2\text{O} \)
(c) \(\text{H}_2\text{O} \), \(\text{CO}_2 \)
(d) \(\text{HPO}_4^{2-} \), \(\text{PO}_4^{3-} \)
(e) \(\text{NH}_2\text{OH}^- \), \(\text{NH}_4\text{OH} \)

3. Choose the couple which is not a conjugate acid-base pair.

(a) \(\text{HCO}_3^- \), \(\text{CO}_2^- \)
(b) \(\text{H}_2\text{O}^+ \), \(\text{H}_2\text{O} \)
(c) \(\text{OH}^- \), \(\text{O}_2^- \)
(d) \(\text{H}_2\text{PO}_4^- \), \(\text{HPO}_4^{2-} \)
(e) \(\text{NH}_2\text{OH}^- \), \(\text{NH}_4\text{OH} \)

4. The ionisation constant of water, \(K_w \), at 37 °C is \(2.42 \times 10^{-14} \) mol L\(^{-2} \). What is the pH for a neutral solution at this normal temperature of the human body?

(a) 0
(b) 6.8
(c) 7.0
(d) 7.2
(e) 14

5. Which of the following reactions is associated with the definition of \(K_a \)?

(a) \(\text{Al}^{3+} + 6\text{H}_2\text{O} \rightleftharpoons \text{[Al(OH)_3]^+} \)
(b) \(\text{[Al(OH)_4]^+} \)
(c) \(\text{OCl}^- + \text{H}_2\text{O} \rightleftharpoons \text{HOCl} + \text{OH}^- \)
(d) \(\text{CN}^- + \text{H}^+ \rightleftharpoons \text{HCN} \)
(e) none of these

6. Using the following \(K_a \) values, indicate the correct order of base strength.

\(\text{HNO}_2 \) \(K_a = 4.0 \times 10^{-4} \);
\(\text{HF} \) \(K_a = 7.2 \times 10^{-4} \);
\(\text{HCN} \) \(K_a = 6.2 \times 10^{-10} \)

(a) \(\text{CN}^- > \text{NO}_2^- > \text{F}^- > \text{H}_2\text{O} > \text{Cl}^- \)
(b) \(\text{Cl}^- > \text{H}_2\text{O} > \text{F}^- > \text{NO}_2^- > \text{CN}^- \)
(c) \(\text{CN}^- > \text{F}^- > \text{NO}_2^- > \text{Cl}^- > \text{H}_2\text{O} \)
(d) \(\text{H}_2\text{O} > \text{CN}^- > \text{NO}_2^- > \text{F}^- > \text{Cl}^- \)
(e) none of these

7. The pH of a solution is raised from 3 to 5. Which of the following statements describing this process is false.

(a) The pOH will be lowered from 11 to 9.
(b) The \([\text{OH}^-] \) will be decreased by a factor of 20.
(c) The final \([\text{H}^+] \) (at pH = 5) is \(10^{-10} \) M.
(d) The initial \([\text{H}^+] \) (at pH = 3) is \(10^{-3} \) M.
(e) The initial solution could be 0.001 M HNO_3.

8. Calculate the pH of a 0.10 M solution of Ca(OH)_2.

(a) 13.30
(b) 13.00
(c) 0.20
(d) 0.10
(e) none of these

9. Nitrous acid, \(\text{HNO}_2 \), has an ionisation constant \(K_a = 4.0 \times 10^{-4} \). The pH of 0.25 M \(\text{HNO}_2 \) is:

(a) 2.09
(b) 2.30
(c) 2.70
(d) 3.70
(e) none of these

10. The sodium salt, NaA, of a weak acid is dissolved in water; no other substance is added. Which of these statements (to a close approximation) is true?

(a) \([\text{H}^+] = [\text{A}^-] \)
(b) \([\text{H}^+] = [\text{OH}^-] \)
(c) \([\text{A}^-] = [\text{OH}^-] \)
(d) \([\text{H}^+] = [\text{A}^-] \)
(e) none of these

11. The pH of a 0.6 M solution of a weak acid is 4.0. What percent of the acid has ionised?

(a) 0.02%
(b) 0.06%
(c) 2%
(d) 4%
(e) 7%

12. What is the equilibrium constant for the following reaction?

\(\text{N}_3^- + \text{H}_2\text{O} \rightleftharpoons \text{HN}_3 + \text{H}_2\text{O} \)

The \(K_a \) value for \(\text{HN}_3 \) is \(1.9 \times 10^{-5} \).

(a) \(5.3 \times 10^{10} \)
(b) \(1.9 \times 10^{-9} \)
(c) \(1.9 \times 10^{-5} \)
(d) \(5.3 \times 10^4 \)
(e) \(1.9 \times 10^9 \)
13. Rank the following 1.0 M solutions in order of decreasing pH.

- NaCN
- H2S
- KOH
- CaCl2
- HI

(a) CaCl2 > NaCN > H2S > HI > KOH
(b) KOH > CaCl2 > HI > NaCN > H2S
(c) H2S > HI > NaCN > KOH > CaCl2
(d) NaCN > CaCl2 > KOH > HI > H2S
(e) KOH > CaCl2 > HI > NaCN > H2S

14. HCN (aq) + HCO3- (aq) = CN- (aq) + H2CO3 (aq)

If $K_a < 1$ for the above reaction, what is the strongest base in this system?

(a) HCN
(b) HCO3-
(c) H2CO3
(d) H2O
(e) none of these

15. What is the pH of a solution that is 0.2 M in acetic acid ($K_a = 1.8 \times 10^{-5}$) and 0.2 M in sodium acetate?

- 4.77
- 5.4
- 7.0
- 8.6
- 9.3

16. Consider a solution consisting of the following two buffer systems:

- H_2CO_3 and HCO_3^-
- $H_2PO_4^-$ and HPO_4^{2-}

At pH 6.4, which one of the following is true of the relative amounts of acid and conjugate base?

(a) $[H_2CO_3] > [HCO_3^-]$ and $[H_2PO_4^-] > [HPO_4^{2-}]$
(b) $[HCO_3^-] > [HCO_3^-]$ and $[HPO_4^{2-}] > [HPO_4^{2-}]$
(c) $[H_2CO_3] < [HCO_3^-]$ and $[H_2PO_4^-] < [HPO_4^{2-}]$
(d) $[H_2CO_3] < [HCO_3^-]$ and $[HPO_4^{2-}] < [HPO_4^{2-}]$
(e) none of these