Acids and Bases IV

Revision: Henderson - Hasselbalch Equation

• For a buffer solution, which contains similar concentrations of a conjugate acid/base pair of a weak acid:

\[K_a = \frac{[H^+][A^-]}{[HA]} \approx \frac{[H^+][\text{added base}]}{[\text{added acid}]} \]

since the dissociation of HA or protonation of A\(^-\) doesn’t lead to a significant change in the concentrations of these species.

Rearranging:

\[\text{pH} \approx pK_a + \log \frac{[\text{added base}]}{[\text{added acid}]} \]
Buffers

- A solution containing both:
 - a weak acid + its salt.
 OR
 - a weak base + its salt.

withstands pH changes when (limited) amounts of acid or base are added.

- Reason: Le Châtelier’s principle.
 - if add acid, then reaction $\text{HA} \rightleftharpoons \text{H}^+ + \text{A}^-$ goes to left to absorb change;
 - vice-versa if add base
Buffers

- Solutions containing both a weak acid + its salt OR a weak base + its salt that withstand pH changes when (limited) amounts of acid or base are added.

\[
\text{Buffer after addition of } H_3O^+ \quad \text{Buffer with equal concentrations of conjugate base and acid} \quad \text{Buffer after addition of } OH^- \\
\begin{align*}
\text{CH}_3\text{COO}^- & \quad \text{CH}_3\text{COOH} \\
H_3O^+ & \quad \text{CH}_3\text{COO}^- \quad \text{CH}_3\text{COOH} \\
\end{align*}
\]

\[
H_2O + CH_3COOH \leftarrow H_3O^+ + CH_3COO^- \quad CH_3COOH + OH^- \rightarrow H_2O + CH_3COO^-
\]
Example

• Find pH of solution which is 0.1 M in NH$_4^+$ and 0.2 M in NH$_3$ where pK_a of NH$_4^+$ = 9.2

\[
\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^-
\]

| before: | 0.2 | 0.1 | 0 |
| after: | 0.2 $- x$ | 0.1 $+ x$ | x |

Using Henderson-Hasselbalch:
Effect of pH Change on Buffer

- Consider change in pH of pure water (pH = 7) if we add 10^{-3} M HCl:

 $$[H^+] = 10^{-3}\text{ M (can neglect amount already present in water)}, \text{ so pH goes from 7 to 3}$$

 Huge change!

 What about buffers?
Example

Consider a buffer solution with 0.1 M each of sodium acetate (NaA) & acetic acid (HA):

(found earlier that pH = 4.7)

What is the pH when 10^{-3} M HCl is added?

\[
\begin{align*}
\text{HA} & \rightleftharpoons \text{H}^+ + \text{A}^- \\
\text{initially:} & \quad 0.1 \quad 10^{-3} \quad 0.1 \\
\text{eqm:} & \quad 0.1 + 10^{-3} - x \quad x \quad 0.1 - 10^{-3} + x
\end{align*}
\]

i.e., suppose all but x of the added H$^+$ → HA

but x will be very small...
Using the Henderson-Hasselbalch Equation:

\[
pH \approx pK_a + \log \frac{[\text{added base}]}{[\text{added acid}]}
\]
Buffer Preparation and Capacity

Buffer Preparation

- If the pH of a required buffer is pK_a of available acid then use equimolar amounts of acid and conjugate base.

- If the required pH differs from the pK_a then use the Henderson-Hasselbalch equation.

Buffer Capacity

Buffer capacity is related to the amount of strong acid or base that can be added without causing significant pH change.

Depends on amount of acid & conjugate base in solution:

- highest when $[HA]$ and $[A^-]$ are large

- highest when $[HA] \approx [A^-]$ (most effective buffers have acid/base ratio less than 10 and more than 0.1 \Rightarrow pH range is ± 1)
Buffers in Natural Systems

• Biological systems, e.g. blood, contain buffers: pH control essential because biochemical reactions are very sensitive to pH

• Human blood is slightly basic, pH ≈ 7.39 – 7.45

• In a healthy person, blood pH is never more than 0.2 pH units from its average value

• pH < 7.2, “acidosis”; pH > 7.6, “alkalosis”

• Death if pH < 6.8 or > 7.8
Buffer System in Blood

• “Extracellular” buffer (outside cell)

\[H^+ + HCO_3^- \rightleftharpoons H_2CO_3 \]

\[H_2CO_3 \rightleftharpoons H_2O + CO_2 (g) \]

– Removal of CO\(_2\) shifts equilibria to right, reducing [H\(^+\)], i.e., raising the pH

– The pH can be reduced by:

\[H_2CO_3 + OH^- \rightleftharpoons HCO_3^- + H_2O \]
Another Blood Buffer

- Phosphate buffer, present inside cells ("intracellular" buffer)
- H_2PO_4^- and HPO_4^{2-}:

$$
\text{H}_2\text{PO}_4^- \iff \text{H}^+ + \text{HPO}_4^{2-}
$$

from H_3PO_4, a tribasic (triprotic) acid

DEMO
Titrations

• **Equivalence Point:**
 - *when number of moles of added base = original number of moles of acid*
 - Strong acid/strong base $\text{pH} = 7$
 - Weak acid/strong base $\text{pH} > 7$
 - Strong acid/weak base $\text{pH} < 7$

• **End Point:**
 - *when a colour change in the indicator is observed*

\Rightarrow Choose an indicator that changes colour close to the equivalence point
An Acid-base Titration

A H^+(aq) + X^-(aq) + M^+(aq) + OH^-(aq) \rightarrow H_2O(l) + M^+(aq) + X^-(aq) C
Titrations: Strong Acid / Strong Base

Equivalence Point at pH 7

<table>
<thead>
<tr>
<th>Volume of NaOH added (mL)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>10.00</td>
<td>1.22</td>
</tr>
<tr>
<td>20.00</td>
<td>1.48</td>
</tr>
<tr>
<td>30.00</td>
<td>1.85</td>
</tr>
<tr>
<td>35.00</td>
<td>2.18</td>
</tr>
<tr>
<td>39.00</td>
<td>2.89</td>
</tr>
<tr>
<td>39.50</td>
<td>3.20</td>
</tr>
<tr>
<td>39.75</td>
<td>3.50</td>
</tr>
<tr>
<td>39.90</td>
<td>3.90</td>
</tr>
<tr>
<td>39.95</td>
<td>4.20</td>
</tr>
<tr>
<td>39.99</td>
<td>4.90</td>
</tr>
<tr>
<td>40.00</td>
<td>7.00</td>
</tr>
<tr>
<td>40.01</td>
<td>9.40</td>
</tr>
<tr>
<td>40.05</td>
<td>9.80</td>
</tr>
<tr>
<td>40.10</td>
<td>10.40</td>
</tr>
<tr>
<td>40.25</td>
<td>10.50</td>
</tr>
<tr>
<td>40.50</td>
<td>10.79</td>
</tr>
<tr>
<td>41.00</td>
<td>11.09</td>
</tr>
<tr>
<td>45.00</td>
<td>11.76</td>
</tr>
<tr>
<td>50.00</td>
<td>12.05</td>
</tr>
<tr>
<td>60.00</td>
<td>12.30</td>
</tr>
<tr>
<td>70.00</td>
<td>12.43</td>
</tr>
<tr>
<td>80.00</td>
<td>12.52</td>
</tr>
</tbody>
</table>

Titration of 40.00 mL of 0.1000 M HCl with 0.1000 M NaOH

Phenolphthalein

pH = 7.00 at equivalence point

Methyl red
Titrations: Weak Acid / Strong Base

- equivalence point pH > 7 (value depends on starting concentrations)
- change is more gradual
Titrations:
Weak Base / Strong Acid

- equivalence point pH < 7
(value depends on starting concentrations)
Titrations:
Strong Base/Weak Acid

Titration of 40.00 mL of 0.1000 M H_2SO_3 with 0.1000 M NaOH

- $pK_a1 = 1.85$
- $K_a1 = 7.19$
- $[H_2SO_3] = [HSO_3^-]$ at first equivalence point
- $pH = 4.25$
- $[HSO_3^-] = [SO_3^{2-}]$ at second equivalence point
- $pH = 9.86$

Buffer region:

Volume of NaOH added (mL):

0 20 40 60 80 100