The textbook for this course is:
The figures used in these notes are reproduced from that text, except where otherwise noted.

Recap - Oxidation Numbers
- The concept of oxidation number is artificial. In assigning oxidation number to an element in a compound it is assumed that all compounds are ionic.

USE OF OXIDATION NUMBERS
- Naming compounds
- Properties of compounds
- Identifying redox reactions

- Oxidation involves an increase in oxidation number
- Reduction involves a decrease in oxidation number

Oxidation Numbers (States)
- O.N. is a measure of how oxidised a species is.
- O.N. is the charge the atom would have if electrons were not shared but were transferred completely.
 - Elements: Oxidation number is zero (0)
 - Ar, N₂, Fe
 - Monatomic ions: Oxidation number is charge
 - Na⁺(I), Ca²⁺(II), Cl⁻(-I), O²⁻(-II)
 - Molecules and polyatomic ions: Shared electrons are assigned to the more electronegative atom

Electronegativity
- **Definition:** Attraction of atom for shared electrons in a bond
- Related to ionization energy:
 - Energy required to remove electron from atom
- Ionization energy depends inversely on atomic size
- Atomic size: increases down group (e’s in outer shells) decreases across period (e’s in same shell)
- Electronegativity: arbitrary units 0.7 to 4.0
 - smallest at lower left Periodic Table - Cs cesium
 - greatest at upper right - F fluorine
Electronegativity

Atomic size (spheres) and electronegativity (bars)

Electronegativity (0-4)

Oxidation Numbers

- Molecules and polyatomic ions: Shared electrons are assigned to more electronegative atom

- Examples:
 - HF: F\(^{-1}\) H\(^{+1}\)
 - CF\(_4\): F\(^{-1}\) C\(^{+IV}\)
 - CO\(_2\): O\(^{-II}\) C\(^{-IV}\)
 - CH\(_4\): H\(^{+I}\) C\(^{-IV}\)
 - NO\(_3\)^-: -1 charge on anion

 \[= 3 \times O^{-II} + N^{V} \]

Rules: Oxidation numbers (states)

- The O.N. of an atom in its elemental form is 0;
- The O.N. of a monoatomic ion is its charge;
- The O.N. of F is always -1 (except in F\(_2\));
- The O.N. of Group 1 elements is always +1;
- The O.N. of Group 2 elements is always +2;
- The O.N. of O is usually -2, except in peroxides where it is -1;
- The O.N. of halogens is usually -1;
- The O.N. of H is +1 with non-metals and -1 with metals.

The oxidation numbers for all atoms must add up to the total charge on the molecule/ion.
Oxidation Number Questions

What is the oxidation number of Cr in the following?

\[\text{CrO}_3 \]

\[x + 3(-2) = 0, \quad x = +6, \quad \text{Cr(VI)} \]

\[\text{Cr}_2\text{O}_3 \]

\[2(x) + 3(-2) = 0, \quad x = +3, \quad \text{Cr(III)} \]

\[[\text{Cr}_2\text{O}_7]^{2-} \]

\[2(x) + 7(-2) = -2, \quad x = +6, \quad \text{Cr(VI)} \]

Why is the oxidation number important?
Naming compounds, properties of the compound, identifying redox reactions.

Transition Metals

Transition elements - \textit{d} orbitals being filled
Concentrate on First Row (Period 4) - 3\textit{d} orbitals being filled

Filling of Atomic Orbitals

Order for filling with electrons:

In general, the \((n-1)d\) orbitals are filled between the \(ns\) and \(np\) orbitals.
Transition Metals

- Large numbers of valence electrons

 ⇒ Commonly have multiple oxidation states.

![Transition Metals - Ion Formation](Slide 22-14)

Transition Metals - Ion Formation

Consider the Period 4 Transition Metals: as the d orbitals fill, the 3d orbital becomes more stable than the 4s.

∴ the 4s electrons are lost before the 3d electrons to form the Period 4 transition metal ions.

\[
\text{Fe} = \quad [\text{Ar}] \quad \uparrow \downarrow \quad \uparrow \uparrow \uparrow \uparrow \uparrow \\
\text{Fe}^{2+} = \quad [\text{Ar}] \quad \uparrow \downarrow \quad \uparrow \uparrow \uparrow \uparrow \\
\text{Fe}^{3+} + e^- = \quad [\text{Ar}] \quad \uparrow \downarrow \quad \uparrow \uparrow \uparrow \uparrow \\
\]

The 4s orbital and the 3d orbitals have very similar energies ⇒ variable oxidation states.
One of the most characteristic chemical properties of these elements is the occurrence of multiple oxidation states.

Hexavalent Chromium
- Cr(VI) is classified as "Carcinogenic to Humans"
- Cr(VI) compounds are soluble in water & may have a harmful effect on the environment.
- Cr(VI) is readily reduced by Fe²⁺ and dissolved sulfides.

Trivalent Chromium
- Cr(III) is considered an essential nutrient
- Most naturally occurring Cr(III) compounds are insoluble and it is generally believed that Cr(III) does not constitute a danger to health
- Cr(III) is rapidly oxidised by excess MnO₂, or slowly by O₂ in alkaline solutions.

Properties of N-compounds

HIGHLY VARIED!

Incredibly stable:
N₂

Extremely explosive:
trinitrotoluene (TNT)

Strong acid:
HNO₃

Weak base:
NH₃

Photochemical smog:
NO₂

Biologically important:
NO + amino acids

Nitroglycerine
Properties of N-compounds

Why such a wide range of properties...?

A: N has an intermediate electronegativity and has an odd number (5) of valence electrons. N has one of the widest ranges of common oxidation states of any element.

Oxidation states of N

<table>
<thead>
<tr>
<th>Oxidation No.</th>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>HNO₃ / NO₃⁻</td>
<td>Strong acid</td>
</tr>
<tr>
<td>IV</td>
<td>NO₂, N₂O₄</td>
<td>Smog</td>
</tr>
<tr>
<td>III</td>
<td>HNO₂ / NO₂⁻</td>
<td>Weak acid / weak base</td>
</tr>
<tr>
<td>II</td>
<td>NO</td>
<td>Smog + biology</td>
</tr>
<tr>
<td>I</td>
<td>N₂O</td>
<td>Greenhouse gas + laughing gas</td>
</tr>
<tr>
<td>0</td>
<td>N₂</td>
<td>Stable</td>
</tr>
<tr>
<td>−I</td>
<td>NH₂OH</td>
<td>Hydrazine, rocket fuel</td>
</tr>
<tr>
<td>−II</td>
<td>N₂H₄</td>
<td></td>
</tr>
<tr>
<td>−III</td>
<td>NH₃ / NH₄⁺</td>
<td>Weak base / weak acid</td>
</tr>
</tbody>
</table>

Oxides of nitrogen

<table>
<thead>
<tr>
<th>Oxidation No.</th>
<th>Compound</th>
<th>Free radicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Nitrous oxide</td>
<td></td>
</tr>
<tr>
<td>(0,+2)</td>
<td>Nitric oxide</td>
<td></td>
</tr>
<tr>
<td>+2</td>
<td>Nitrogen dioxide</td>
<td></td>
</tr>
<tr>
<td>+4</td>
<td>Nitrate radical</td>
<td></td>
</tr>
<tr>
<td>+5</td>
<td>Nitrate radical</td>
<td></td>
</tr>
</tbody>
</table>

Work out the oxidation numbers of N in each compound...
Oxides of nitrogen

- **NO** (Nitric oxide)
- **NO₂** (Nitrogen dioxide)

= NOₓ... a principle component of photochemical smog

- Colourless gas
- Brown gas
- Free radical
- Free radical

Air pollution

- The brown haze is largely NO₂

Assigning oxidation numbers

- **Examples**
 - I₂
 - ON=0 (elemental form)
 - Zn in ZnCl₂
 - ON=+2 (Cl=-1, sum of ONs =0)
 - Al³⁺
 - ON=+3 (ON of monatomic ion=charge)
 - N in HNO₃
 - ON=+5 (O=-2, H=+1, sum of ONs=0)
 - S in SO₄²⁻
 - ON=+6 (O=-2, sum of ONs=charge on ion)

- **Examples**
 - N in NH₃
 - ON=-3 (H=+1, sum of ONs = 0)
 - N in NH₄⁺
 - ON=-3 (H=+1, sum of ONs =charge on ion)
Solubility and complexes
Silberberg 19.4, 23.1, 23.4

The textbook for this course is:
The figures used in these notes are reproduced from that text, except where otherwise noted.

- Q and K_{sp} revision
- Complex ions and coordination compounds
- Chelates
- Geometry of complexes
- Biologically important metal complexes
- K_{stab}

Slide 23-1

Q vs K_{sp} revision

Does a precipitate form if equal volumes of 2×10^{-5} M HCl and 2×10^{-5} M AgNO$_3$ solutions are mixed?

$[Ag^+] = 0.00002$ M

$K_{sp} = 1.6 \times 10^{-10}$ M2

$Q = [Ag^+][Cl^-] = 1.0 \times 10^{-10}$ M$^2 < K_{sp} = 1.6 \times 10^{-10}$ M2

\therefore AgCl(s) does not precipitate.

Slide 23-2

Predicting precipitation

Superaturated solution $Q > K_{sp}$

Product of ions in solution is greater than solution can "handle"

Some ions precipitate out to reduce the difference between Q and K_{sp}

Solution and precipitate at equilibrium $Q = K_{sp}$

Slide 23-3

Hyrolysis of Metal Ions

When a metal ion enters water, a complex ion forms with water as the ligand.

- Metal ions act as Lewis acids.
- Water is the Lewis base.

$[M(H_2O)_4]^{2+}(aq)$

Slide 23-4
Metal ions add ligands one at a time.

The stepwise exchange of NH₃ for H₂O in M(H₂O)₄²⁺.

- M(H₂O)₄²⁺ + NH₃ → M(H₂O)₃(NH₃)²⁺ + H₂O
- M(H₂O)₃(NH₃)²⁺ + NH₃ → M(H₂O)₂(NH₃)₃⁺ + H₂O
- M(H₂O)₂(NH₃)₃⁺ + NH₃ → M(NH₃)₄⁺

Acidity of Aqueous Transition Metal Ions

Eg [Fe^{II}(OH₂)₆]²⁺ + H₂O ⇌ [Fe^{II}(OH₂)₅(OH)]⁺ + H₃O⁺

Metal Ion Hydrolysis

<table>
<thead>
<tr>
<th>Free Ion</th>
<th>Hydrated Ion</th>
<th>Kₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe³⁺</td>
<td>Fe(H₂O)₆³⁺(aq)</td>
<td>6 x 10⁻³</td>
</tr>
<tr>
<td>Cr³⁺</td>
<td>Cr(H₂O)₆³⁺(aq)</td>
<td>1 x 10⁻⁴</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>Al(H₂O)₆³⁺(aq)</td>
<td>1 x 10⁻⁴</td>
</tr>
<tr>
<td>Be²⁺</td>
<td>Be(H₂O)₄²⁺(aq)</td>
<td>4 x 10⁻⁴</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>Cu(H₂O)₆²⁺(aq)</td>
<td>3 x 10⁻⁸</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>Fe(H₂O)₆²⁺(aq)</td>
<td>4 x 10⁻⁹</td>
</tr>
<tr>
<td>Pb⁴⁺</td>
<td>Pb(H₂O)₆²⁺(aq)</td>
<td>3 x 10⁻⁹</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td>Zn(H₂O)₆²⁺(aq)</td>
<td>1 x 10⁻⁹</td>
</tr>
<tr>
<td>Co²⁺</td>
<td>Co(H₂O)₆²⁺(aq)</td>
<td>2 x 10⁻¹⁰</td>
</tr>
<tr>
<td>Ni²⁺</td>
<td>Ni(H₂O)₆²⁺(aq)</td>
<td>1 x 10⁻¹⁰</td>
</tr>
</tbody>
</table>

Complex Ions

Reaction of a metal ion (Lewis acid) with anions or molecules (Lewis base) forms a complex ion

e.g. Ag⁺(aq) + 2 NH₃ ⇌ Ag(NH₃)₂⁺(aq)

- A complex ion is a chemical species whose components are capable of separate existence:
 - e.g. Ag(NH₃)₂⁺ distinct from Ag⁺ and NH₃, (not CO₃²⁻ because O²⁻ and C⁴⁺ do not exist independently)
The Coordination Bond

- A **ligand** donates an electron pair towards the metal ion to form a **coordinate covalent (also “Dative”) bond**.
- The lone pair is attracted towards the metal ion.
- Ligands must have at least one lone pair.
- More than one ligand can bind to a metal ion.

Complex Ions

- Metals are usually transition metals or Al$^{3+}$ (also Mg$^{2+}$ in chlorophyll).
- Ligands have at least one atom with a lone pair: e.g. H$_2$O, NH$_3$, Cl$^-$, CN$^-$.

Coordination Compounds

Coordination compounds consist of:
- **Complex ion** (metal ion with attached ligands)
- **Counter ions** (additional anions/cations needed to give no net overall charge)

Eg. [Co(NH$_3$)$_6$]Cl$_3$ (s) \rightleftharpoons [Co(NH$_3$)$_6$]$^{3+}$ (aq) + 3 Cl$^-$ (aq)

The square brackets indicate the complex ion and the three Cl$^-$ ions are the counter ions. There are 6 NH$_3$ ligands. When dissolved in water, the complex exists as the cation and the 3 Cl$^-$ ions are separate.

Coordination Number

- The number of ligand atoms attached to the metal is called the coordination number.
 - Varies from 2 to 8 and depends on the size, charge and electron configuration of the metal ion.

Typical coordination numbers for some metal ions.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Coord no.</th>
<th>Metal</th>
<th>Coord no.</th>
<th>Metal</th>
<th>Coord no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$^+$</td>
<td>2,4</td>
<td>Mn$^{2+}$</td>
<td>4,6</td>
<td>Sc$^{3+}$</td>
<td>6</td>
</tr>
<tr>
<td>Ag$^+$</td>
<td>2</td>
<td>Fe$^{2+}$</td>
<td>6</td>
<td>Cr$^{3+}$</td>
<td>6</td>
</tr>
<tr>
<td>Au$^+$</td>
<td>2,4</td>
<td>Co$^{2+}$</td>
<td>4,6</td>
<td>Co$^{3+}$</td>
<td>6</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>4,6</td>
<td>Ni$^{2+}$</td>
<td>4,6</td>
<td>Au$^{3+}$</td>
<td>4</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>4,6</td>
<td>Zn$^{2+}$</td>
<td>4,6</td>
<td>Me$^{2+}$</td>
<td>4</td>
</tr>
</tbody>
</table>
Coordination Number and Geometry

- The number of ligand atoms attached to the metal is called the coordination number.

<table>
<thead>
<tr>
<th>COORD. NO.</th>
<th>GEOMETRY</th>
<th>COMMENTS / Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>LINEAR</td>
<td>uncommon</td>
</tr>
<tr>
<td>4</td>
<td>PLANAR</td>
<td>electronic cause</td>
</tr>
<tr>
<td>4</td>
<td>TETRAHEDRAL</td>
<td>common</td>
</tr>
<tr>
<td>6</td>
<td>OCTAHEDRAL</td>
<td>common</td>
</tr>
</tbody>
</table>

Ligands

- Some ligands have more than one atom with lone pairs that can be bonded to the metal ion - these are **CHELATES** (GREEK: claw)
 - **Monodentate** ligands (denta - tooth) can form 1 bond
 - e.g. H_2O, NH_3, Cl^-
 - **Bidentate** ligands can form 2 bonds
 - e.g. ethylenediamine (en)
 - **Polydentate** ligands - can form more than 2 bonds
 - some as many as 6

 - e.g. EDTA - ethylenediamminetetraacetate (hexadentate) - forms very stable complexes with most metal ions and is used as a "scavenger" to remove TOXIC heavy metals such as lead from the human body.

Examples of ligands

Table 23.7: Some Common Ligands in Coordination Compounds

<table>
<thead>
<tr>
<th>Ligand Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monodentate</td>
<td>H_2O, water NH_3, ammonia Cl^-, fluoride ion</td>
</tr>
<tr>
<td>Bidentate</td>
<td>H_2N, ethylenediamine (en) CO_3^{2-}, carbonate ion</td>
</tr>
<tr>
<td>Polydentate</td>
<td>H_2N, ethylenediamine PO_4^{3-}, phosphate ion $\text{C}_6\text{H}_5\text{O}_7^{2-}$, ethylenediaminetetraacetate (EDTA)</td>
</tr>
</tbody>
</table>

Examples of ligands in complex ions

- $[\text{Fe(H}_2\text{O)}_6]^{3+}$
- $[\text{Fe(en)}_3]^{3+}$
- $[\text{Fe(EDTA)}]$
Some chelate ligands

Bidentate

ethylenediamine (en)

\[
\begin{align*}
\text{M}^{x+} & : \quad \text{H}_2\text{N} & \text{NH}_2 \\
\text{H}_2\text{N} & : \quad \text{H}_2\text{C} & \text{CH}_2 \\
\end{align*}
\]

\[\text{[Co(en)_3]}^{3+}\]

- Can encapsulate a single metal ion.

EDTA is used to treat severe lead poisoning.

Some chelate ligands

Hexadentate

ethylenediaminetetraacetate tetraanion (EDTA\(^4-\))

\[
\begin{align*}
\text{O} & : \quad \text{O} & \text{O} & \text{O} & \text{O} \\
\end{align*}
\]

1597 Libavius publishes first scientific observation of a coordination compound - the blue colour (due to [Cu(NH₃)₂]⁺) formed when lime water containing ammonium chloride comes into contact with brass.

\[\text{[Cu(EDTA)]}^{2-}\]
Biochemically Important Complexes

Heme
- Carries oxygen in blood
- Gives blood its red colour

Biologically Important Complexes

Chlorophyll

Vitamin B₁₂

Dorothy Crowfoot Hodgkin
The Nobel Prize in Chemistry 1964

Biologically Important Complexes

Carbonic anhydrase

\[\text{CO}_2(g) + 2\text{H}_2\text{O}(l) \rightarrow \text{H}_3\text{O}^+\text{(aq)} + \text{HCO}_3^-\text{(aq)} \]
Equilibria involving complexes

Metal ions add ligands one at a time
The metal ions in solution are in equilibrium.

\[\text{M(H}_2\text{O)}_4^{2+} \rightarrow \text{M(H}_2\text{O)}_3(\text{NH}_3)^2+ \rightarrow \text{M(NH}_3)_4^{2+} \]

\[\text{NH}_3 \rightarrow 3\text{NH}_3 \]

The stepwise exchange of \text{NH}_3 for \text{H}_2\text{O} in \text{M(H}_2\text{O)}_4^{2+}.

Equilibrium Constant \(K_{\text{stab}} \)

An equilibrium constant can be assigned to the equilibrium process, known as the stability constant, \(K_{\text{stab}} \).

Overall:

\[[\text{M(OH}_2)_4]^{2+}_{(aq)} + 4 \text{NH}_3(aq) \leftrightarrow [\text{M(NH}_3)_4]^{2+}_{(aq)} + 4 \text{H}_2\text{O} \]

\[K_{\text{stab}} = \frac{[\text{M(NH}_3)_4]^{2+}}{[\text{M(OH}_2)_4]^{2+}} \times [\text{NH}_3]^4 \]

\(K_{\text{stab}} \) = stability constant or formation constant. The larger \(K_{\text{stab}} \), the more stable the complex.

\(K_{\text{stab}} \) = metal ion + ligand \(\rightarrow \) complex

\[\text{Ag}^{+}_{(aq)} + \text{NH}_3(aq) \leftrightarrow \text{Ag(NH}_3)^+_{(aq)} \quad K_1 = 2.1 \times 10^3 \]

\[\text{Ag(NH}_3)^+_{(aq)} + \text{NH}_3(aq) \leftrightarrow \text{Ag(NH}_3)_2^{+}\text{aq}} \quad K_2 = 8.2 \times 10^3 \]

\[K_{\text{stab}} = K_1 \times K_2 = \frac{[\text{Ag(NH}_3)_2^+]_{(aq)}}{[\text{Ag}^+]_{(aq)} \times [\text{NH}_3]^2} \]

Metal ion \(aq \) + \(n \) ligand \(aq \) \(\leftrightarrow \) complex \(aq \)
Stepwise Complex Formation

Overall:
\[
[Ni(H_2O)_6]^{2+} + 3en \rightleftharpoons [Ni(en)_3]^{2+} + 6H_2O
\]

\[
K_{stab} = \frac{[[Ni(en)_3]^{2+}]}{[[Ni(H_2O)_6]^{2+}][en]^3} = 10^{18.28}
\]

Green

\[
[Ni(H_2O)_6]^{2+} + en \rightleftharpoons [Ni(en)(H_2O)_4]^{2+} + 2H_2O
\]

\[K_1\]

blue-green

light blue

\[
[Ni(en)(H_2O)_4]^{2+} + en \rightleftharpoons [Ni(en)_2(H_2O)_2]^{2+} + 2H_2O
\]

\[K_2\]

purple

\[
[Ni(en)_2(H_2O)_2]^{2+} + en \rightleftharpoons [Ni(en)_3]^{2+} + 2H_2O
\]

\[K_3\]

\[
K_{stab} = K_1 \times K_2 \times K_3 = 10^{18.28}
\]

Example: A solution is prepared by dissolving AgNO_3 (0.01 mol) in a 1.00 M water solution of KCN (500 mL) and adding enough water to make 1.00 L of solution. Calculate the equilibrium [Ag^+] given \(K_{stab} [Ag(CN)_2]^- = 10^{20} \text{ M}^{-2} \).

(Example: A solution is prepared by dissolving AgNO_3 (0.01 mol) in a 1.00 M water solution of KCN (500 mL) and adding enough water to make 1.00 L of solution. Calculate the equilibrium [Ag^+] given \(K_{stab} [Ag(CN)_2]^- = 10^{20} \text{ M}^{-2} \).

EKIAS
(careful with the direction of the equation represented by \(K_{stab} \)!)
Complexes

• Recap
• Solubility and complexes
• Isomers
• Nomenclature

Silberberg 19.4, 23.1, 23.4

Recap

• Unit conversions
• \(K_{sp} \)
• Working out solubility from \(K_{sp} \) and vice versa
• Predicting precipitation: \(Q \) vs \(K_{sp} \)
• Things that affect solubility for the same \(K_{sp} \):
 • common ion effect
 • pH
 • and...

Recap: Last Lecture

• Complexes are...
• Ligands
• Coordination number and geometry
• Biologically important complexes
• \(K_{stab} \)

Recap: Colours of Transition Metals

For a given ligand, the colour depends on the oxidation state of the metal ion.

\[
\begin{align*}
[\text{V(H}_2\text{O)}_6]^{2+} & \quad & [\text{V(H}_2\text{O)}_6]^{3+} \\
[\text{Cr(NH}_3)_6]^{3+} & \quad & [\text{Cr(NH}_3)_5\text{Cl}]^{3+}
\end{align*}
\]

For a given metal ion, the colour depends on the ligand.
Why are we doing complexes together with solubility?

- Example: \(\text{AgBr}_\text{(s)} \rightarrow \text{Ag}^+\text{(aq)} + \text{Br}^-\text{(aq)} \)

- Calculate the solubility of \(\text{AgBr} \) in:
 - a) water
 - b) 0.1M sodium thiosulfate (\(\text{Na}_2\text{S}_2\text{O}_3 \))

\[\text{AgBr} \ K_{sp} = 5.0 \times 10^{-13}, \quad \text{Ag}(\text{S}_2\text{O}_3)^3^- \ K_{stab} = 4.7 \times 10^{13} \]

Solubility of \(\text{AgBr} \) in water

- a) water
 \[\text{AgBr}_\text{(s)} \rightarrow \text{Ag}^+\text{(aq)} + \text{Br}^-\text{(aq)} \]
 \[K_{sp} = [\text{Ag}^+][\text{Br}^-] \]
 \[= x \times x \]
 (every \(x \) moles of \(\text{AgBr} \) produces \(x \) moles of \(\text{Ag}^+ \) and \(x \) moles of \(\text{Br}^- \))
 \[K_{sp} = x^2 = 5.0 \times 10^{-13} \]
 \[x = 7.07 \times 10^{-7} \text{ M} \]
- Solubility = 7.1 \(\times 10^{-7} \) M

Solubility of \(\text{AgBr} \) in “hypo”

- b) 0.1 M \(\text{Na}_2\text{S}_2\text{O}_3 \)

\[\text{AgBr}_\text{(s)} + 2\text{S}_2\text{O}_3^{2-}_\text{(aq)} \rightarrow \text{Ag}(\text{S}_2\text{O}_3)_2^{3-}_\text{(aq)} + \text{Br}^-\text{(aq)} \]

\[K_{overall} = K_{sp} \times K_{stab} = 5.0 \times 10^{-13} \times 4.7 \times 10^{13} = 24 \]

Solubility of \(\text{AgBr} \) in “hypo”

- b) 0.1 M \(\text{Na}_2\text{S}_2\text{O}_3 \)

\[\text{AgBr}_\text{(s)} + 2\text{S}_2\text{O}_3^{2-}_\text{(aq)} \rightarrow \text{Ag}(\text{S}_2\text{O}_3)_2^{3-}_\text{(aq)} + \text{Br}^-\text{(aq)} \]

I

\[\begin{array}{ccc}
\text{0.1M} & \text{0} & \text{0} \\
\text{-2x} & +x & +x \\
\text{0.1-2x} & x & x
\end{array} \]

Assume: in this case not nec.

\[K_{overall} = x^2/(0.1-2x)^2 = 24 \]

Substitute:
\[x/(0.1-2x) = 4.9 \]
\[x = 0.45 \]

Check: in this case not nec.

Solubility of \(\text{AgBr} \) in hypo is 0.45 M (cf in water 7.1 \(\times 10^{-7} \) M)
Complex Formation and Solubility

- Metal complex formation can influence the apparent solubility of a compound.

 - eg AgCl(s) + 2 NH₃ ⇌ [Ag(NH₃)₂]⁺ + Cl⁻

- This occurs in 2 stages:
 1. AgCl(s) ⇌ Ag⁺ + Cl⁻
 2. Ag⁺ + 2 NH₃ ⇌ [Ag(NH₃)₂]⁺

Complex formation (reaction 2) removes the free Ag⁺ from solution and so drives the dissolution of AgCl (reaction 1) forward.

A ligand increases the solubility of a slightly soluble ionic compound if it forms a complex ion with the cation.

Types of Isomerism in Complexes

- **Structural Isomers**: different atom connectivities
 - Coordination sphere isomerism
 - Linkage isomerism

- **Stereoisomers**: same atom connectivities but different arrangement of atoms in space
 - Geometric isomerism
 - Optical isomerism
Isomers

• **Coordination isomerism**
 (which ligands are in coordination sphere and which outside)

Example:

\[
\text{[Pt(NH}_3\text{)}_4\text{Cl}_2\text{]}(\text{NO}_2\text{)}_2
\]

\[
\text{tetraamminedichloroplatinum(IV) nitrite}
\]

\[
\text{[Pt(NH}_3\text{)}_4\text{(NO}_2\text{)}_2\text{]}\text{Cl}_2
\]

\[
\text{tetraamminedinitroplatinum(IV) chloride}
\]

Isomers

• **Linkage isomerism**
 (occurs when a ligand has two alternative donor atoms)

Example: Thiocyanate ion

\[
\text{[S}=\text{C}=\text{N]}^{\text{-}}
\]

\[
\begin{array}{c}
\text{H}_3\text{N} \\
\text{N} \\
\text{H}_3\text{N} \\
\text{NH}_3 \\
\text{NH}_3 \\
\text{NH}_3
\end{array}
\text{and}
\begin{array}{c}
\text{H}_3\text{N} \\
\text{N} \\
\text{H}_3\text{N} \\
\text{NH}_3 \\
\text{NH}_3 \\
\text{S}=\text{C}=\text{N}
\end{array}
\]

Isomers

• **Geometric Isomerism**
 (occurs when a ligand has two alternative donor atoms)

Example 2: NO\text{}_2^-

\[
\text{[Pt(NH}_3\text{)}_2\text{Cl}_2\text{]}
\]

\[
\text{cis- and trans-}
\]

\[
\text{[Co(NH}_3\text{)}_4\text{Cl}_2\text{]}^{\text{+}}
\]

\[
\text{cis- and trans-}
\]

\[
\text{cis-}
\]

\[
\text{trans-}
\]

\[
\text{Square planar}
\]

\[
\text{Octahedral}
\]

\[
\text{cis-}
\]

\[
\text{trans-}
\]

\[
\text{cis-}
\]

\[
\text{trans-}
\]
Isomers

• Optical Isomerism

\[\text{[NiClBrFI]}^2- \]

Four different substituents about tetrahedral centre.
Non-superimposable on its mirror image.
The two molecules are optical isomers.

Slide 24-17

Isomers

• Optical Isomerism

compare \(\text{cis-[Cr(NH}_3)_4\text{Cl}_2]^+ \) and \(\text{cis-[Cr(en)_2Cl}_2]^+ \)

\[[\text{M(en)}_3]^{n+} \text{ complexes have optical isomers:} \]

Not superimposable

Mirror plane

Slide 24-18

Optical isomerism in an octahedral complex ion.

\[\text{cis-[Co(en)_2Cl}_2]^+ \]
\[\text{trans-[Co(en)_2Cl}_2]^+ \]

rotation of \(\text{i} \) gives \(\text{III} \neq \text{II} \)
rotation of \(\text{i} \) gives \(\text{III} = \text{II} \)

Slide 24-19

Nomenclature

• Name cation, then anion, as separate words
Example
\[\text{[Pt(NH}_3)_4\text{Cl}_2](\text{NO}_2)_2 \text{ tetraamminedichloroplatinum(IV) nitrite} \]
\[\text{[Pt(NH}_3)_4(\text{NO}_2)_2]\text{Cl}_2 \text{ tetraamminedinitroplatinum(IV) chloride} \]

• Ligands, then metal, in same word

• Number of ligands as Greek prefixes
\(\text{(di-, tri-, tetra-, penta-, hexa-)} \)

Slide 24-20
Nomenclature

- Oxidation state in Roman numeral in parentheses after name of metal
 - e.g. \([\text{Ag(NH}_3\text{)}_2]\text{NO}_3\) diamminesilver(I) nitrate

- Anionic ligands end in '-o'; e.g. chloro, hydroxo

- Neutral ligands named as molecule, except \(\text{H}_2\text{O}\) (aqua), \(\text{NH}_3\) (ammine), \(\text{CO}\) (carbonyl) and \(\text{NO}\) (nitrosyl)

Naming Ligands

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Neutral</td>
<td></td>
</tr>
<tr>
<td>Aqua</td>
<td>(\text{H}_2\text{O})</td>
</tr>
<tr>
<td>Ammine</td>
<td>(\text{NH}_3)</td>
</tr>
<tr>
<td>Carbonyl</td>
<td>(\text{CO})</td>
</tr>
<tr>
<td>Nitrosyl</td>
<td>(\text{NO})</td>
</tr>
</tbody>
</table>

- Anionic ligands end in '-o'; e.g. chloro, hydroxo

- Neutral ligands named as molecule, except \(\text{H}_2\text{O}\) (aqua), \(\text{NH}_3\) (ammine), \(\text{CO}\) (carbonyl) and \(\text{NO}\) (nitrosyl)

Nomenclature (pp.1020-1021 Silberberg)

- Ligands named in alphabetical order (Note: prefixes do not affect the order)
 - e.g. \([\text{Co(NH}_3\text{)}_5\text{Cl}]\text{SO}_4\) pentaamminechlorocobalt(III) sulfate

- Anionic complexes end in 'ate'
 - e.g. \(\text{K}_3[\text{CrCl}_6]\) potassium hexachlorochromate(III)

- Some metals in anionic complexes use Latin -ate names:
 - Fe (ferrate), Cu (cuprate), Ag (argentate), Pb (plumbate), Au (aureate), Sn (stannate)

- Complex ligands require Latin prefixes \(\text{bis, tris, tetrakis}\ldots\)
 - e.g. \(\text{bis(ethylenediamine)}\) for \((\text{en})_2\)

Naming Metal Ions

(a) If the complex is neutral or positively charged the normal metal name is used.

(b) If the complex is negatively charged, 'ate' is added to the metal name.

- e.g. Co cobaltate, Zn zincate, etc.

Special cases:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Name in Anion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Ferrate</td>
</tr>
<tr>
<td>Copper</td>
<td>Cuprate</td>
</tr>
<tr>
<td>Lead</td>
<td>Plumbate</td>
</tr>
<tr>
<td>Silver</td>
<td>Argentate</td>
</tr>
<tr>
<td>Gold</td>
<td>Aureate</td>
</tr>
<tr>
<td>Tin</td>
<td>Stannate</td>
</tr>
</tbody>
</table>
Nomenclature - Examples

- \([\text{Co(H}_2\text{O)}_6]\text{CO}_3\) hexaaquacobalt(II) carbonate
- \([\text{Cu(NH}_3)_4]\text{SO}_4\) tetraamminecopper(II) sulfate
- \((\text{NH}_4)_3[\text{FeF}_6]\) ammonium hexafluoroferrate(III)
- \(K_4[\text{Mn(CN)}_6]\) potassium hexacyanomanganate(II)

Recap: Assigning oxidation numbers

Example

- Find ON of Co in: \([\text{Co(NH}_3)_5\text{Cl}]\text{SO}_4\) pentaamminechlorocobalt(III) sulfate
 - \([\text{Co(NH}_3)_5\text{Cl}]^{2+}\) ammine is neutral, chloro is -1
 - \(\text{ON} + (5\times0) + -1 = +2\) (sum of ONs=overall charge)
 - \(\text{ON} = +3\)

Example

- Find ON of Mn in: \(K_4[\text{Mn(CN)}_6]\) potassium hexacyanomanganate(II)
 - \([\text{Mn(CN)}_6]^{2-}\) (CN) is -1 overall
 - \(\text{ON} + (6\times-1) = -4\) (sum of ONs=overall charge)
 - \(\text{ON} = +2\)

Complexes

What you need to know:

- See recap slides
- Won’t be asked to draw formulae of complicated biological complexes
- Be able to use the naming rules to write formulae from names and names from formulae