FROM LAST LECTURE:

ELECTROPHILIC ADDITION:

\[\text{H}_2 / \text{Pd catalyst} \]

\[\text{Br} \]

\[\text{dil. H}_2\text{SO}_4 \]

\[\text{HBr} \]
AROMATIC COMPOUNDS

Benzene C_6H_6

Kekule proposed the structure in 1865
Benzene does not behave like cyclohexatriene

<table>
<thead>
<tr>
<th>Br_2</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

H$_2$ with a Pd/C catalyst

The reactions of benzene are not like an alkene at all!

<table>
<thead>
<tr>
<th>carbon-carbon bond</th>
<th>Bond length</th>
<th>Bond strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C (alkane)</td>
<td>154 pm</td>
<td>356 kJ/mol</td>
</tr>
<tr>
<td>C=C (alkene)</td>
<td>133 pm</td>
<td>636 kJ/mol</td>
</tr>
<tr>
<td>benzene</td>
<td>139 pm</td>
<td>518 kJ/mol</td>
</tr>
</tbody>
</table>

Benzene has special properties - it is aromatic.

Benzene’s Unusual Structure
- All its C-C bonds are the same length: 139 pm — between single (154 pm) and double (134 pm) bonds
- Electron density in all six C-C bonds is identical
- Structure is planar, hexagonal
- C–C–C bond angles 120°
• Each of the 6 carbon atoms in benzene is sp\(^2\) hybridised
• Each carbon forms σ-bonds to two neighbouring carbon atoms and a σ-bond to one hydrogen atom
• Each carbon atom has a p-orbital, which can participate in π-bonding giving 3 π-bonds (the p orbitals are perpendicular to the plane of the six-membered ring)

This representation gives alternating single and double bonds, BUT:
There are two possible representations we can draw for benzene with the π-bonds in different positions. These two structures are related by movement of electron pairs in the π-bonds:

$$\begin{array}{c}
1 \quad 2 \\
5 \quad 4 \\
\text{ } \\
3 \\
6
\end{array} \quad \leftrightarrow \quad \begin{array}{c}
6 \\
5 \\
\text{ } \\
4 \\
1
\end{array}$$

These structures are called resonance forms of benzene.

Bonding in benzene should be thought of as an average of these two resonance forms or a resonance hybrid.

The resonance hybrid will have:
- half a π-bond between each adjacent pair of carbons
- a bond strength and bond length between that of a C-C single bond (no π-bond) and a C=C double (one π-bond)

Resonance structures are imaginary, not real: Benzene has a single unchanging hybrid structure that is the average of the resonance forms.

Resonance structures differ only in the position of their π-electrons: Benzene is a perfect hexagon with all carbon-carbon bond lengths identical (139 pm). Curly arrows denote the movement of electron pairs only, NOT atoms.

i.e. Benzene is NOT:

$$\begin{array}{c}
6 \\
5 \\
\text{ } \\
4 \\
1
\end{array} \quad \leftrightarrow \quad \begin{array}{c}
1 \quad 2 \\
5 \quad 4 \\
\text{ } \\
3 \\
6
\end{array}$$

The more resonance structures there are, the more stable the molecule: Benzene has two identical resonance structures and is 150 kJ mol$^{-1}$ more stable than the energy predicted for 1,3,5-cyclohexatriene.
The benzene ring contains six sp² hybridised carbon atoms, each with a p-orbital which forms part of a delocalised π–bond system characteristic of aromatic compounds. The electron delocalisation results in a stabilisation of 150 kJ/mol compared to the hypothetical cyclohexatriene structure.

Localised electrons = constrained to one atom or shared between two atoms

Delocalised electrons = shared between three or more atoms = greater stability

Nomenclature

(i) Prefix + benzene for substituents F, Cl, Br, I, NO₂

![Nitrobenzene](image1)

![Fluorobenzene](image2)

(ii) Common names for some derivatives (must be learnt):

![Phenol](image3)

![Amine](image4)

![Methylbenzene](image5)

![Carboxylic acid](image6)

![Formaldehyde](image7)
(iii) Disubstituted systems

Two substituents in the:
- 1,2- positions referred to as ortho- or o-,
- 1,3- positions referred to as meta- or m-,
- 1,4- positions referred to as para- or p-.

(iv) Three or more substituents: use numbers

NOTE
- phenyl substituent abbreviated as Ph-
- benzyl group
Reactions of Benzene

Like alkenes, the \(\pi \)-electrons are available for reaction and benzene can react with electrophiles.

Aromatic compounds undergo *electrophilic substitution* reactions (NOT *electrophilic addition*).

Electrophilic substitution preserves the special stability associated with the aromatic nature of the compound.

Examples of Electrophilic Substitution

(i) Nitration

\[
\text{HNO}_3 + 2 \text{H}_2\text{SO}_4 \rightleftharpoons \text{NO}_2^+ + \text{H}_3\text{O}^+ + 2 \text{HSO}_4^- \\
\text{nitronium ion}
\]
(ii) Bromination

\[
\text{Br}_2 + \text{FeBr}_3 \rightarrow \text{Br} \text{Br} + \text{FeBr}_4
\]

Bromonium ion

\[
\begin{align*}
\text{nucleophile} & \quad \text{electrophile} \\
\text{Br} + \text{FeBr}_4 & \rightarrow \text{Br} \text{Br} + \text{FeBr}_4
\end{align*}
\]
(iii) Chlorination

\[
\text{C}_6\text{H}_6 + \text{Cl}_2 \xrightarrow{\text{FeCl}_3} \text{C}_6\text{H}_5\text{Cl}
\]

(iv) Friedel-Crafts Acylation

\[
\text{C}_6\text{H}_6 + \text{R}\text{COCl} \xrightarrow{\text{AlCl}_3} \text{C}_6\text{H}_5\text{RCO}
\]

\[
\text{R}\text{COCl} + \text{AlCl}_3 \Rightarrow \text{R}\text{COAlCl}_2
\]

\[
\text{R}\text{COAlCl}_2 \xrightarrow{\text{AlCl}_3} \text{R}\text{CO} + \text{AlCl}_4^-
\]

Step 1: Nucleophile approaches electrophile

Step 2: Aromatic ring substitution

\[
\text{H}_2\text{C}_6\text{H}_4\text{H}_2 + \text{R}\text{CO} \xrightarrow{\text{AlCl}_4} \text{H}_2\text{C}_6\text{H}_3\text{R} = \text{H}_2\text{C}_6\text{H}_3\text{R} \xrightarrow{\text{H}^+} \text{H}_2\text{C}_6\text{H}_2\text{R}
\]
What reagents would you use for this reaction?
Aromaticity

Benzene more stable than a hypothetical cyclohexatiene by 150 kJ/mol

Generally, **for a compound to be aromatic** like benzene, four criteria are necessary:
1) molecule must be cyclic (i.e. ring or **fused** ring structures)
2) all atoms in the ring(s) must be sp² hybridised with a p-orbital perpendicular to the ring(s)
3) the ring(s) must be planar
4) AND there must be **4n + 2** π-electrons
 (n=0, 1, 2, 3 ... ; *i.e.* there must be 2, 6, 10, 14π-electrons)

Are these compounds aromatic?
Aromatic Heterocycles

Some definitions:

Heterocyclic compounds contain elements in addition to carbon such as N, S, O, P - together they form a ring.

Aromatic Heterocycles are aromatic compounds that have elements in addition to carbon in the ring.

There are many heterocyclic aromatic compounds and many are very common.

Nomenclature is specialized

Aromatic Heterocycles contain one or more heteroatoms (usually O, N, or S) in the ring

![Pyridine structure](image)

N is sp² hybridised. There are 6 π-electrons in the aromatic system. The N lone pair is in an sp² orbital perpendicular to the π-system. As a result the N lone pair is available for reaction, e.g. nitrogen is basic:

![Reaction](image)

(product still aromatic)
N is sp2 hybridised. The N lone pair is in a p-orbital and is part of the 6 π-electrons in the aromatic system. As a result it is not available for reaction, i.e. pyrrole is not basic:

\[
\text{HCl} \quad \xrightarrow{\text{X}} \quad \text{HN}^+ \text{Cl}^- \quad \text{(non-aromatic product)}
\]

O is sp2 hybridised. One O lone pair is in a p-orbital and is part of the 6 π-electrons in the aromatic system. The other O lone pair is in an sp2 orbital and not part of the aromatic system.

S is sp2 hybridised. One S lone pair is in a p-orbital and is part of the 6 π-electrons in the aromatic system. The other S lone pair is in an sp2 orbital and not part of the aromatic system.
N1 is analogous to the N of pyrrole (i.e. unreactive), while N3 is analogous to the N of pyridine, i.e. it will be basic:

The imidazole ring is found in the amino acid histidine:

Pyrimidine - 6 π-electron aromatic structure. Both N's are like the N of pyridine, i.e. they are basic.

Purine - 10 π-electron aromatic structure. N's 1, 3 and 9 are like the N of pyridine, i.e. they are basic. N 7 is like the N of pyrrole, i.e. non-basic.

Derivatives of purine and pyrimidine form the bases in DNA and RNA.